Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

Педагогика->Реферат
- Педагогическая деятельность представляет собой воспитыва­ющее и обучающее воздействие учителя на ученика (учеников), направленное на его личностное,...полностью>>
Педагогика->Контрольная работа
Издревле люди задумывались, о том, что такое человек, и какова его природа, сначала, в эпоху первобытнообщинного строя человек сравнивал себя с каким-...полностью>>
Педагогика->Реферат
Зависимость нашей цивилизации в полной мере проявилась от тех способностей и качеств личности, которые закладываются образованием. На современном этап...полностью>>
Педагогика->Реферат
Рассматривая условия творческой деятельности современных подростков в центре дополнительного образования, параллельно с особенностями и проблемами дет...полностью>>

Главная > Реферат >Педагогика

Сохрани ссылку в одной из сетей:

2.3. РЕАЛИЗАЦИЯ И АНАЛИЗ ИСПОЛЬЗОВАНИЯ ПРОБЛЕМНЫХ СИТУАЦИЙ В МЕТОДИКЕ ПРЕПОДАВАНИЯ МАТЕМАТИКИ

Уже в дошкольном возрасте жизнь ставит перед детьми бесчисленные математические проблемы. С момента прихода ребенка в школу функции «жизни» принимает школа; она становится ответственной за то, получит ли ребенок соответствующую подготовку, приучится ли к математическому мышлению, научится ли отыскивать и решать математические проблемы.

Проблемность при обучении математики возникает совершенно естественно, не требуя никаких специальных упражнений, искусственно подбираемых ситуаций. В сущности, не только каждая текстовая задача, но и добрая половина других упражнений, представленных в учебниках математики и дидактических материалах, и есть своего рода проблемы, над решением которых ученик должен задуматься, если не превращать их выполнения в чисто тренировочную работу, связанную с решением по готовому, данному учителем образцу.

Учитель нередко наносит ущерб делу, разучивая с детьми способы решения задач определенных видов, предлагая подряд большое число однотипных упражнений, каждые из которых, будучи предъявлено среди упражнений других видов, без дополнительных объяснений, могло бы послужить для отталкивания собственной мысли учащихся.

Упражнения в решении составных текстовых задач, в сравнении выражений, требующие использования известных детям закономерностей и связей в новых условиях, упражнения геометрического содержания, которые часто требуют переосмысления приобретенных ранее знаний, и другие должны быть использованы для постановки детьми проблемных задач. Только в этом случае обучение математике будет оказывать действенную помощь в решении образовательных, воспитательных и развивающих задач обучения, способствуя развитию познавательных способностей учащихся, таких черт личности, как настойчивость в достижении поставленной цели, инициативность, умение преодолевать трудности.

Введение математических понятий представляет также много возможностей для организации проблемных ситуаций в классе.

Любая составная текстовая задача ставит ученика перед определенными трудностями, требующими значительного умственного усилия при выполнении мыслительных операций, приводящих к решению. Проблемные текстовые задачи ставят ученика в ситуацию, в которой у него должно появиться удивление и ощущение трудности, или одно только ощущение трудности, которое, однако, ученик намерен преодолеть. Если эти условия отсутствуют, то задача им уже перестала быть для него проблемной, или еще не может быть ею в связи с тем, что он не владел в достаточной степени средними ступенями, дающими возможности для преодоления данной трудности.

Решение составной текстовой задачи нового вида (содержащей новую для учащихся комбинацию известных уже видов простых задач) требует выполнения всех тех элементов продуктивного мышления, которые свойственны исследовательскому подходу: это и наблюдение и изучение фактов (анализ условия, выделение числовых данных, осознание вопроса) и выявление промежуточных неизвестных (на основе анализа связей, существующих между искомыми и данными), и составление плана решения (при составлении которого могут возникнуть различные направления поиска ответа, могут быть найдены различные способы решения) и осуществление этого плана с использованием имеющихся данных и приобретенных ранее знаний, умений и навыков. Это и формулировка ответа и проверка выполненного решения.

Проблемы, заключающиеся в математической текстовой задаче приводит к тому, что эта задача выступает перед учеником как целостная ситуация – с теми элементами, которые имеются для выполнения этой ситуации (данные), и теми, которые имеются для внесения ее решения (неизвестное). Она может быть закрытой проблемой, и тогда в задаче нет недостатка в данных, или открытой, где решение нельзя довести до конца или ученик сам должен собрать эти данные.

Типология задач наиболее полно разработана в курсе математики.

Используя проблемы развития математических способностей учащихся, психолог В.А. Крутецкий приводит типы задач для развития активного самостоятельного, творческого мышления. Знание учителем этой типологии – важное условие создания проблемных ситуаций при изучении нового материала, повторении пройденного и при формировании умений и навыков. Вот некоторые из них:

- задачи с несформулированным вопросом;

- задачи с недостающими данными;

- задачи с излишними данными;

- задачи с несколькими решениями;

- задачи с меняющимся содержанием;

- задачи на соображение, логическое мышление.

Таким образом, постановка вопроса об использовании проблемных ситуаций не является новой для учителя, а требуют лишь правильного использования всех ресурсов.

Но не всякий материал может служить основой для создания проблемной ситуации. К непроблемным элементам учебного материала относится вся конкретная информация, содержащая цифровые и качественные данные; факты, которые нельзя «открыть». Непроблемны все задачи, решаемые по образцу, по алгоритму, по известному способу.

Проблемное обучение возможно применять для усвоения обобщенных знаний – понятий, правил, законов, причинно-следственных и других логических зависимостей.

В силу того, что проблемный путь получения знаний всегда требует больших затрат времени, чем сообщение готовой информации, нельзя говорить вообще о переходе на проблемное обучение.

В обучении всегда будут нужны и тренировочные задачи, и задания, требующие воспроизведения знаний, способствующие запоминанию необходимого и т.п. Лишь сравнительно небольшая часть новых знаний должна приобретаться способом самостоятельных открытий, поэтому говорим здесь только об использовании элементов проблемного обучения. Оптимальной структурой учебного материала будет являться сочетание традиционного изложения с включением проблемных ситуаций.

При рассмотрении сущности и особенностей проблемного обучения видим, что организация такой технологии действительно способствует развитию умственных сил учащихся (противоречия заставляют задуматься, искать выход из проблемной ситуации, ситуации затруднения), самостоятельности (самостоятельное видение проблемы, формулировка проблемного вопроса, проблемной ситуации, самостоятельность выбора плана решения), развитию творческого мышления (самостоятельное применение знаний, способов действий, поиск нестандартного решения). Оно вносит свой вклад в формирование готовности к творческой деятельности, способствует развитию познавательной активности, осознанности знаний, предупреждает появление формализма, бездумности. Проблемное обучение обеспечивает более прочное усвоение знаний; развивает аналитическое мышление, способствует сделать учебную деятельность для учащихся более привлекательной, основанной на постоянных трудностях; оно ориентирует на комплексное использование знаний.

Важно и то, что проблемное обучение, приучающее учащихся сталкиваться с противоречиями, разбираться в них, искать решение, является одним из средств формирования диалектического мышления.

К слабым сторонам проблемного обучения следует отнести значительно большие расходы времени на изучение учебного материала; недостаточную эффективность их при решении задач формирования практических умений и навыков, особенно трудового характера, где показ и подражание имеют большое значение; слабую эффективность их при усвоении принципиально новых разделов учебного материала, где не может быть применен принцип апперцепции (опоры на прежний опыт); при изучении сложных тем, где крайне необходимо объяснение учителем, а самостоятельный поиск оказывается недоступным для большинства школьников.

Итак, постановка вопроса о реализации и анализе использования проблемных ситуаций не является новой в методике преподавания математики, а требует лишь правильного использования всех ресурсов. Раскрытие этих ресурсов и их влияние на развитие творческого мышления школьников предпринимаем в 3 главе работы, где проведем экспериментальное исследование на базе средней школы №155 г. Новосибирска, в 5 классе, учитель Холодова Л.М.

ГЛАВА 3. ЭКСПЕРИМЕНТАЛЬНОЕ ИСПОЛЬЗОВАНИЕ ПРОБЛЕМНЫХ СИТУАЦИЙ НА УРОКАХ МАТЕМАТИКИ И ИХ ВЛИЯНИЕ НА РАЗВИТИЕ ТВОРЧЕСКОГО МЫШЛЕНИЯ ШКОЛЬНИКОВ

3.1. ИЗУЧЕНИЕ ТВОРЧЕСКОГО МЫШЛЕНИЯ

ШКОЛЬНИКОВ С ПОМОЩЬЮ ТЕСТОВ ТОРРЕНСА

Первый этап нашего экспериментального исследования состоит в изучении творческого мышления школьников, то есть констатирующий эксперимент.

В 5 классе средней школы №155 было проведено тестирование на выявление уровня творческого учащихся, их гибкости, беглости и оригинальности.

Были использованы тесты Торренса. Е.П. Торренс, создавший наиболее известные тесты креативности, обратил основное внимание не на продукты, а на сам процесс творческого мышления. Тесты Е.П. Торренса были разработаны в связи с задачами образования, как часть продолжительной исследовательской программы, методической работы с учащимися, стимулирующей их творческие способности.

Показатели по всем частям текста определяются факторами, установленными в исследованиях Дж. Гилфорд, а именно: легкость, гибкость, оригинальность и точность.

Тесты Е.П. Торренса созданы в 1966 году. Все тесты сгруппированы в вербальную и невербальную батареи. Первая батарея обозначается как словесное творческое мышление, вторая – изобразительное творческое мышление. С тем, чтобы избежать беспокойства испытуемых и создать благоприятную психологическую атмосферу, тесты называются занятиями, и, как все время подчеркивается в инструкциях, занятиями веселыми. Тесты предназначены для использования в детском саду и во всех классах школы, хотя до 4 класса их нужно предъявлять индивидуально и устно.

Тест Е.П. Торренса на вербальное творческое мышление (1966) предназначен для диагностики у детей таких характеристик, как умение задавать информативные вопросы, устанавливать возможные причины и следствия применительно к ситуациям, изображенным на серии картинок, предлагать оригинальные способы применения обычных предметов, задавать нестандартные вопросы по поводу хорошо знакомого предмета, строить предложения.

Невербальными тестами предусматривается выполнение испытуемыми таких заданий, как конструирование картин (на основе изображения ярко раскрашенной фигуры неправильной формы), завершение картинки, использование параллельных линий или кругов для составления изображений. Надежность тестов очень велика – от 0,7 до 0,9. Вербальные более надежны, чем изобразительные.

Тесты Торренса используются в отечественной психодиагностике умственного развития. Но это не просто их перевод, а тщательное их адаптирование, проверка надежности и валидности, разработка норм.

Тест «Дорисовывание» для исследования невербального творческого мышления у детей 4-11 лет.

Стимульный материал. Листы белой бумаги, в середине которых простым или черным карандашом нарисованы контуры.

Инструкция. Посмотри на этот листок. Кто из ребят начал рисовать, но не успел закончить. Подумай, что из этого может получиться и закончи, пожалуйста, рисунок.

Проведение теста. Детям дают только простой или черный карандаш.

Взрослый не вмешивается в процесс рисования и на возможные вопросы детей отвечают, что они могут рисовать все, что им хочется. Для дорисовывания детям обычно предлагают по очереди 5-6 контуров (по мере выполнения). После выполнения каждого задания ребенка спрашивают, что именно нарисовано на картинке, однако при возникновении затруднения взрослый не настаивает на ответе.



Загрузить файл

Похожие страницы:

  1. Реализация межпредметных связей на элективных курсах по началам математического анализа в классах

    Дипломная работа >> Педагогика
    ... методов решения задач (математических, физических, химических, биологических и т.д.), составлению и решению задач на ... методы. В математике, например, это векторный метод, метод геометрических преобразований, метод ... задачи на нахождение максимума или минимума ...
  2. Методы решения уравнений содержащих параметр

    Дипломная работа >> Математика
    ... геометрических закономерностей часто приводит к решению уравнений, содержащих параметр. Решение задач ... решения задача на нахождение ... методы на факультативах. В главе 4 «Квадратные уравнения» непосредственно приводятся аналитический и графический методы решения ...
  3. Методы изучения сезонности

    Курсовая работа >> Экономика
    ... методом простой средней, методом относительных чисел, методом У. Персона. В расчетной части рассматриваются задача на нахождение ... задача на анализ ряда динамики и определение его средних показателей. В аналитической ... геометрической. Для анализа этим методом ...
  4. Методы и модели подготовки принятия решений

    Реферат >> Менеджмент
    ... решения 37 Литература 44 Введение Фундаментальные научные методы ППР. Аналитические методы. Дескриптивные методы ... методов. Эвристические методы принятия решений – специальные (индуктивные) методы решения задач, направленные на ... арифметические, геометрические, ...
  5. Экономико математические методы и модели (1)

    Лекция >> Экономико-математическое моделирование
    ... (ЛП) можно решать аналитическими и графическими методами. Аналитические методы являются основой для решения задачи на ЭВМ. Их единственный ...

Хочу больше похожих работ...

Generated in 0.0020930767059326