Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

Промышленность, производство->Курсовая работа
Многие виды сырья для пищевых производств содержат значительное количество воды. При протекании технологических процессов нередко происходит увлажнени...полностью>>
Промышленность, производство->Реферат
С первого взгляда кажется, что процесс регистрации документов достаточно прост и не может являться причиной возникновения каких-либо вопросов. К тому ...полностью>>
Промышленность, производство->Реферат
Одним из перспективных направлений повышения эффективности производства в легкой промышленности является применение автоматизированных систем проектир...полностью>>
Промышленность, производство->Реферат
Преимущества сварки: экономия металла, современные технологические процессы, снижение трудоемкости, улучшение качества соединений металлов их работосп...полностью>>

Главная > Реферат >Промышленность, производство

Сохрани ссылку в одной из сетей:

Оглавление

Введение 3

Теоретическая глава 7

Индукционная плавка в холодном тигле (ИПХТ) 7

Коммерческий пакет программ ANSYS 11

Практическая глава 14

1.2 Постановка задачи 14

1.3 Опыт проведенный на кафедре ЭТПТ 18

1.4 Создание модели 28

1.5 Верификация модели 31

Заключение 37

Список литературы 38


Введение

Практические задачи, возникшие в связи с развити­ем ряда областей науки и техники (таких как квантовая радиотехника, полупроводниковая электро­ника, ядерная физика и др.) потребовали производства новых материалов, отличающихся высокой химической активностью в расплавленном состоянии. Среди высокотемпературных материалов оксиды занимают особое место вследствие благоприятного сочетания химико-физических и теплофизических свойств и уникальной стойкости в кислородосодержащих средах. В то же время оксиды и оксидные соединения образуют целые классы важнейших технических материалов: флюсы и шлаки, стекла и цементы, огнеупорные и абразивные материалы, оксидные диэлектрики и полупроводники, лазерные и композиционные материалы, люминофоры и материалы для защитных покрытий, от которых зависит уровень развития энергетики, машиностроения, связи и других отраслей народного хозяйства. Выплавка этих материалов традиционными способами оказалась невозможной, и разрабатываются раз­личные методы, позволяющие плавить химически ак­тивные тугоплавкие материалы без загрязнения. В плавильных устройствах стали использовать так называемые холодные тигли, т.е. контейнеры, рабочая температура которых ниже температуры плавления пе­реплавляемого материала. Тем или иным способом вы­деляя тепло в садке, удалось создать устойчивую ван­ну расплава, непосредственно соприкасающуюся с хо­лодным тиглем, или отделенную от него слоем нерасплавившегося материала. Из-за высоких температур проведение практических опытов связано с высокими затратами энергии и ресурсов, а так же высоких требований к надежности оборудования. Поэтому в настоящее время наравне с физическим моделированием, также, в связи с развитием вычислительной техники, стали широко применять математическое моделирование.

Следует отметить преимущества компьютерного математического моделирования, которое позволяет получить, например, картину всего течения и графически визуализировать поля скоростей, давлений или температур во всей области течения, а не только в нескольких точках, где расположены соответствующие датчики при экспериментальных исследованиях. При компьютерном моделировании отсутствуют проблемы, связанные с возмущениями исследуемых процессов датчиками, применяемыми в экспериментах; отсутствуют трудности, связанные с очень малыми или большими размерами исследуемых объектов, очень высокими или низкими температурами, огнеопасными или токсичными веществами, невесомостью или агрессивными средами и т. п.; численное решение можно получить для реальных условий исследуемого процесса, что далеко не всегда возможно при экспериментальных исследованиях. Но компьютерное моделирование имеет и ряд недостатков, таких как неточность модели из-за сложности ввода свойств материалов, следовательно неточности при задании модели будут давать не идеально точные зависимости от температуры. На данном этапе развития компьютерных мощностей очень проблематично описывать трёхмерные модели, поэтому задачи вводятся в 2-D постановке, что также пагубно отражается на точности. Определенные сложности возникают и при построение физической установки и проведении опыта соответствующего модели и из-за наличия различных возмущающих воздействий при проведении опыта, таких как износ оборудования, циркуляция воздуха. Несмотря на все вышеперечисленные недостатки, которые могут очень сильно сказаться на точности модели, главная цель, ради которой и создавалась модель, остается неизменной. А именно анализ процессов происходящих в слитке. Понимание процессов и закономерностей в заготовке поможет определить недостатки в имеющейся модели и установке и их устранить, то есть усовершенствовать установку.

В настоящее время признано, что математическое моделирование с помощью компьютеров сложных задач тепломассообмена и динамики жидкости часто оказывается более дешевым и точным, чем экспериментальные исследования. Численные методы, воплощенные в универсальные программные комплексы, становятся инструментом исследователей и инженеров и часто являются одной из составных частей систем.

Многие задачи гидродинамики, теплообмена не поддаются аналитическому решению, поэтому единственной возможностью их теоретического анализа является компьютерное математическое моделирование. Прогресс в разработке численных методов позволил существенно расширить круг задач, доступных анализу. Полученные на основе этих методов результаты используются практически во всех областях науки и техники.

Очевидно, оптимальной стратегией научных исследований является сочетание экспериментальных исследований с математическим (компьютерным) моделированием.

Указанные преимущества, а также бурное развитие вычислительной техники и численных методов в последние годы, позволяют успешно использовать универсальные программные комплексы для математического моделирования тепломассообмена и гидрогазодинамики в областях науки и техники.

Целью данной работы является моделирование процессов в расплаве стекла при индукционной плавке в холодном тигле (в дальнейшем ИПХТ). Следовательно на основании моделирования можно провести доработку и улучшение установки, в зависимости от поставленных задач. Опыт, проводившийся на кафедре ЭТПТ, целью которого было измерение профилей температур в расплаве стекла для трех режимов генератора с помощью высокотемпературных термопар, взят за основу работы для сравнения результатов моделирования с реально полученными результатами и проверки точности модели.

Для исследования задач ИПХТ, не поддающихся аналитическому решению, используется компьютерное математическое моделирование в коммерческом программном пакете «ANSYS». Для этого производится создание электротепловых и гидродинамических моделей.

Теоретическая глава

Индукционная плавка в холодном тигле (ИПХТ)

Индукционный нагрев основан на способности элек­тромагнитного поля проникать в толщу материала. Ес­ли электромагнитное поле будет переменным по вели­чине или направлению, то под действием магнитной со­ставляющей поля в материале будет индуктироваться электродвижущая сила (э.д.с). В электропроводных материалах индуктированная э.д.с. вызывает протека­ние тока. В диэлектриках ток не возникает. Как вся­кий электрический ток, индуктированный ток I выделя­ет тепловую энергию на активном сопротивлении r, ко­торым характеризуется контур тока в материале. Количество тепла, выделяющегося за время τ, подчиня­ется закону Джоуля-Ленца:

Q=I2r τ , (1)

где Q количество теплоты в Дж.

Индуктированный ток, так же как и магнитное по­ле, вызвавшее его, изменяется во времени по величине и направлению. Величину магнитного поля принято ха­рактеризовать напряженностью. Чем больше напряжен­ность переменного магнитного поля, тем больше индук­тированный ток и, следовательно, интенсивнее нагрев.

Источником поля является катушка-индуктор (изго­товляемый обычно из медной трубки, охлаждаемой во­дой), к которой подводят ток от специального генератора. Нагреваемый материал размещают таким обра­зом, чтобы поле индуктора пронизывало его.

Напряженность магнитного поля прямо пропорцио­нальна току индуктора. Однако увеличивать ее, изме­няя ток индуктора, можно лишь до определенного зна­чения тока, при котором медь расплавляется несмотря на интенсивное охлаждение водой.

1.1.1Преимущества индукционной плавки

Индукционная плавка в холодных тиглях отличает­ся от дуговой и плавки электронным пучком следую­щими преимуществами:

1. При индукционной плавке возможно интенсивное перемешивание расплава без использования специальных устройств. При индукционном нагреве тепло выде­ляется в значительном объеме расплава или в поверх­ностном слое, объема. Это создает благоприятные усло­вия для конвективного перемешивания и получения рав­номерной температуры по объему. Но особенно важно, что при индукционном нагреве создастся сильное при­нудительное перемешивание расплава вследствие элек­тродинамического взаимодействия токов, индуктирован­ных в расплаве, с током индуктора.

2. Используя перемешивание, расплав можно пере­греть во всем объеме тигля. Предел перегрева опреде­ляется только мощностью источника тока и устойчивостью расплава при высоких температурах.

3. Индукционную плавку в холодных тиглях можно проводить в любой среде, начиная от глубокого ваку­ума, необходимого для рафинирования расплава от ле­тучих примесей, кончая атмосферой повышенного дав­ления, необходимой дли предотвращения термической диссоциации соединений с летучей компонентой.

4. Поверхность расплава при индукционной плавке не закрыта электродом, как в дуговой печи, поэтому возможна лучшая очистка расплава от летучих приме сей и газов. В сочетании с регулируемым нагревом и интенсивным перемешиванием наличие свободной по­верхности обеспечивает условия рафинирования при нормальном давлении, аналогичные электроннолучевой плавке, но без перегревов и испарения расплава.

5. Процесс индукционного нагрева надежен и устой­чив, подаваемую мощность можно легко регулировать в широких пределах. В установках для индукционного нагрева отсутствуют такие недолговечные элементы, как катод в установках электроннолучевого нагрева.

6. Вследствие того, что токи, наведенные в распла­ве при наличии гарнисажа, и токи, наведенные в ме­таллическом тигле, не являются продолжением друг друга, как это происходит в дуговых печах, дуги меж­ду расплавом и тиглем не возникает, и нет опасности на­рушения стенки тигля.

Схема с цилиндрическим индуктором также имеет ряд достоинств:

  • всесторонний нагрев с перемешиванием расплава позволяет получить глубокую ванну с равномерным распределением температуры по высоте и радиусу

  • индуктор имеющий высокое напряжение вынесен из зоны термоионизированных газов над расплавом, что снижает вероятность электрических пробоев и повышает надежность работы печи

Особенностью плавки в холодных тиглях является наличие гарнисажа. В металлургии гарнисажем называется особый слой на границе расплава и тигля, предохраняющий тигель от разъедания. Плавка с гарнисажем гарантирует абсолютную чистоту расплава, так как он отделен от возможного источника загрязнения, то есть стенки тигля, кристаллическим слоем. Именно эта особенность привлекает к ней повышенный интерес в металлургии тугоплавких материалов.

Именно за счет схемы с цилиндрическим индуктором и соответственно наличия естественного перемешивания, ванна расплава является не стационарной. Для учета конвекционных потоков в модели решается гидродинамическая задача. Наличие гарнисажа также отразится на графике распределения тепловых полей.

Коммерческий пакет программ ANSYS



Загрузить файл

Похожие страницы:

  1. Научные основы современных сталеплавильных процессов

    Книга >> Промышленность, производство
    ... , с одной стороны, и теории процессов массопереноса и теплопередачи – ... Многочисленные исследования на "холодных" и "горячих" лабораторных ... другие методы. Плавка металла в тиглях из ... 2-3 для вероятной (практически наблюдаемым количествам микроскопических ...
  2. Технологические процессы в машино-строении

    Книга >> Транспорт
    ... рабочего пространства печи, и холодного воздуха и газообразного топлива ... печи можно осуществлять плавку методом переплава (на ... , в свою очередь, практически эквидистантны поверхности изложницы (или ... 2 расположена в обогреваемом тигле с расплавленным металлом. ...
  3. Задачи пожарно-технической экспертизы и методы их решения

    Книга >> Безопасность жизнедеятельности
    ... методов было упорядоченным и могло бы реализовываться экспертами с разным опытом практической ... открытом (закрытом) тигле, а также ... нестандартных плавких вставок ... и холодной жидкостей ... пожарно-технической экспертизе // Теория и практика криминалис­тических ...
  4. Ломоносов, Михаил Васильевич

    Реферат >> История
    ... владевшими никакими научными методами. М. В. Ломоносов и ... плавки (точные размеры тиглей — современные практически ... наблюдений установлять теорию, через теорию исправлять наблюдения  ... течение Ломоносова течение — холодное течение, подповерхностное ...
  5. Строение металлов (1)

    Реферат >> Промышленность, производство
    ... годы ожидается интенсивное развитие теории и практики процессов порошковой ... методом осуществляется эффективный контроль ка­чества металла изделий и заготовок практически ... металлов подвергаться обработке в холодном и горячем состояниях. Тех­нологические ...

Хочу больше похожих работ...

Generated in 0.002377986907959