Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

Экология->Реферат
Человеку приходится все больше вмешиваться в хозяйство биосферы - той части нашей планеты, в которой существует жизнь. Биосфера Земли в настоя- щее вр...полностью>>
Экология->Реферат
Загрязнение окружающей среды свинцом и его соединениями предприятиями металлургической промышленности определяется спецификой их производственной деят...полностью>>
Экология->Реферат
Основні джерела прісної води на території України - стоки річок Дніпра, Дністра, Південного Бугу, Сіверського Дінця, Дунаю з притоками, а також малих ...полностью>>
Экология->Реферат
Загрязнение атмосферы – результат выбросов загрязняющих веществ из различных источников. Причинно-следственные связи этого явления нужно искать в прир...полностью>>

Главная > Курсовая работа >Экология

Сохрани ссылку в одной из сетей:

Содержание

ВВЕДЕНИЕ

Глава 1. АЛЮМИНИЙ И ОКРУЖАЮЩАЯ СРЕДА

Глава 2. СПОСОБЫ ОПРЕДЕЛЕНИЯ АЛЮМИНИЯ В СТОЧНЫХ ВОДАХ

2.1 Определение малых концентраций алюминия

2.2 Фотометрический метод с экстракцией гидроксихинолята алюминия

2.3 Фотометрический метод с применением эриохромцианина Р

ВВЕДЕНИЕ

Являясь одним из самых распространенных элементов в земной коре, алюминий содержится практически в любой природной воде. Алюминий попадает в природные воды естественным путем при частичном растворении глин и алюмосиликатов, а также в результате вредных выбросов отдельных производств (электротехническая, авиационная, химическая и нефтеперерабатывающая промышленность, машиностроение, строительство, оптика, ракетная и атомная техника) с атмосферными осадками или сточными водами. Соли алюминия также широко используются в качестве коагулянтов в процессах водоподготовки для коммунальных нужд. Содержание алюминия в поверхностных водах колеблется в пределах от единиц до сотен мкг/дм3 и сильно зависит от степени закисления почв.

Глава 1. АЛЮМИНИЙ И ОКРУЖАЮЩАЯ СРЕДА

Алюминий (лат. Aluminium) - химический элемент III группы периодической системы Д.И. Менделеева. Имеет атомный номер 13, атомную массу 26,98154. Алюминий - серебристо-белый металл, легкий (2,7 г/см3), пластичный, с высокой электропроводностью, температура плавления 660 oС. Химически активен (на воздухе покрывается защитной оксидной пленкой). По распространенности в природе занимает 4-е место среди элементов и 1-е среди металлов (8,8% от массы земной коры). Известно несколько сотен минералов алюминия (алюмосиликаты, бокситы, алуниты и др.).

Металлический алюминий впервые был получен в 1825 г. датским физиком Х.К. Эрстедом (Orsted). Алюминий широко применяется в быту (посуда) и технике: в авиации, автомобилестроении, строительстве (конструкционный материал, преимущественно в виде сплавов с другими металлами), электротехнике (заменитель меди при изготовлении кабелей и др.), пищевой промышленности (фольга), металлургии (легирующая добавка), а также имеет массу других применений.

Источники

Являясь одним из самых распространенных элементов в земной коре, алюминий содержится практически в любой природной воде. Алюминий попадает в природные воды естественным путем при частичном растворении глин и алюмосиликатов, а также в результате вредных выбросов отдельных производств (электротехническая, авиационная, химическая и нефтеперерабатывающая промышленность, машиностроение, строительство, оптика, ракетная и атомная техника) с атмосферными осадками или сточными водами. Соли алюминия также широко используются в качестве коагулянтов в процессах водоподготовки для коммунальных нужд. Содержание алюминия в поверхностных водах колеблется в пределах от единиц до сотен мкг/дм3 и сильно зависит от степени закисления почв.

Влияние на качество воды.

Присутствие в воде алюминия в концентрациях, превышающих 0.2 мг/л способно вызвать выпадение в осадок хлопьев гидрохлорида алюминия, а также изменение цветности воды. Иногда такие проблемы могут возникать уже при концентрациях алюминия в 0.1 мг/л.

Пути поступления в организм.

Основным источником поступления алюминия в организм человека является пища. Например, чай может содержать алюминия от 20 до 200 раз больше, чем вода, на которой он приготовлен. К числу других источников относятся вода, атмосферный воздух, лекарственные препараты, алюминиевая посуда (есть данные, что после термической обработки в такой посуде содержание алюминия в пище возрастает), дезодоранты и пр. С водой поступает не более 5 - 8% от суммарно поступающего в организм человека количества алюминия. Совместный комитет экспертов ФАО/ВОЗ по пищевым добавкам установил величину переносимого суточного потребления (ПСП) на уровне 1 мг/кг веса. То есть суточное потребление алюминия взрослым человеком может достигать 60-90 мг, хотя на практике редко превышает 35-49 мг и сильно зависит от индивидуальных особенностей организма и режима питания.

Потенциальная опасность для здоровья.

Метаболизм алюминия у человека изучен недостаточно, однако известно, что неорганический алюминий плохо всасывается и большая часть его выводится с мочой. Алюминий обладает низкой токсичностью для лабораторных животных. Тем не менее, отдельные исследования показывают, что токсичность алюминия проявляется во влиянии на обмен веществ, в особенности минеральный, на функцию нервной системы, в способности действовать непосредственно на клетки - их размножение и рост. Избыток солей алюминия снижает задержку кальция в организме, уменьшает адсорбцию фосфора, одновременно в 10-20 раз увеличивается содержание алюминия в костях, печени, семенниках, мозге и в паращитовидной железе. К важнейшим клиническим проявлениям нейротоксического действия относят нарушение двигательной активности, судороги, снижение или потерю памяти, психопатические реакции. В некоторых исследованиях алюминий связывают с поражениями мозга, характерными для болезни Альцгеймера (в волосах больных наблюдается повышенное содержание алюминия). Однако имеющиеся на данный момент у Всемирной Организации Здравоохранения эпидемиологические и физиологические данные не подтверждают гипотезу о причинной роли алюминия в развитии болезни Альцгеймера. Поэтому ВОЗ не устанавливает величины концентрации алюминия по медицинским показателям, но в то же время наличие в питьевой воде до 0.2 мг/л алюминия обеспечивает компромисс между практикой применения солей алюминия в качестве коагулянтов и органолептическими параметрами питьевой воды.

Глава 2. СПОСОБЫ ОПРЕДЕЛЕНИЯ АЛЮМИНИЯ В СТОЧНЫХ ВОДАХ

Метод атомно-абсорбционного спектрального анализа отличается высокой абсолютной и относительной чувствительностью. Метод позволяет с большой точностью определять в растворах около восьмидесяти элементов в малых концентрациях, поэтому он широко применяется в биологии, медицине (для анализа органических жидкостей), в геологии, почвоведении (для определения микроэлементов в почвах) и других областях науки, а также в металлургии для исследований и контроля технологических процессов.

По точности и чувствительности этот метод превосходит многие другие; поэтому его применяют при аттестации эталонных сплавов и геологических пород (путем перевода в раствор).

Чувствительность определения большинства элементов в водных растворах с пламенной атомизацией лежит в интервале от 0,005 до л-10 мкг/мл (т. е. от 5*10-7 до 10-3—10-4%): при этом расходуется от 0,1 до нескольких миллилитров раствора. Ошибка воспроизводимости единичного измерения (коэффициент вариации) р≤0,5% при благоприятных условиях измерения. На каждое измерение интенсивности аналитической линии затрачивается, как правило, не более 30 с. Столь высокая воспроизводимость результатов анализа объясняется стабильностью пламенного атомизатора, а также и высокой точностью схем регистрации и измерения интенсивности аналитических линий в приборах, предназначенных для атомно-абсорбционного анализа.

Существенные ошибки, связанные с изменением общей композиции проб, возникают лишь при анализе растворов сложного переменного состава; такие ошибки, как и в пламенной фотометрии, связаны с влиянием состава пробы на процессы атомизации, включая и распыление раствора.

Сравнение с эмиссионно-пламенной фотометрией показывает, что большая часть элементов определяется методом атомной абсорбции с более высокой или равной чувствительностью. По имеющимся данным с меньшей чувствительностью определяются, главным образом, щелочные и щелочноземельные элементы, у которых длина волны резонансных линий более 300 нм.

До разработки беспламенных способов атомизации область применения атомных спектров поглощения ограничивалась анализом растворов. Приемы беспламенной атомизации позволяют непосредственно анализировать порошковые и твердые пробы малых размеров с абсолютной чувствительностью порядка 10-8—10-14 г в зависимости от элемента; по точности они уступают пламенным методам.

Приборы для атомно-абсорбционного анализа подразделяются на однолучевые, двухлучевые, одноканальные и многоканальные. Принципиальные схемы одно- и двухлучевого спектрометра показаны на рис. 1.

В однолучевом спектрофотометре свет от источника резонансного излучения, питаемого импульсным током, пропускают через пламя, в которое впрыскивается мелкодисперсный аэрозоль раствора пробы. В пламени частички аэрозоля испаряются и диссоциируют, образуя свободные атомы, способные поглощать свет на резонансных длинах волн. В результате атомного поглощения начальная интенсивность светового пучка I0 снижается до некоторой величины I, зависящей от концентрации данного элемента в пробе. Монохроматор выделяет узкую область спектра (доли нанометра), в которую попадает нужная аналитическая линия. Приемник света (обычно — фотоэлектронный умножитель) превращает световой поток в электрический сигнал, который после усиления настроенным на частоту модуляции усилителем переменного тока воспринимается регистрирующим устройством. В качестве последнего применяются самописец, цифровой вольтметр или стрелочный прибор. Основным преимуществом однолучевого спектрофотометра, кроме его простоты, является минимум оптических деталей и, следовательно, наименьшие потери света на пути от источника света до его приемника. Интенсивность резонансного излучения измеряют дважды — до распыления анализируемого образца в пламя и в момент его распыления. Разность этих двух отсчетов и определяет значение аналитического сигнала.

Рис. 1. Принципиальные схемы атомно-абсорбционных спектрофотометров:

а) однолучевой спектрометр с электрической модуляцией электропитания источника резонансного излучения;

б) двухлучевой спектрометр с модуляцией резонансного излучения вращающимся зеркальным диском:

1 — источник резонансного излучения; 2 — атомизатор; 3 — монохроматор; 4 — детектор; 5 — система регистрации

 В двухлучевом спектрофотометре первичный пучок резонансного излучения делится на два, один из которых далее проходит через атомизатор, а второй — в обход его. Затем оба пучка попеременно направляются на входную щель монохроматора и поочередно (благодаря сдвигу по фазе) детектируются, усиливаются и сравниваются друг с другом. На выходе такого прибора отсчитывается непосредственно значение оптической плотности . Главным преимуществом двухлучевого спектрофотометра считается лучшая долговременная стабильность, так как данная схема позволяет компенсировать колебания в яркости свечения источника и в чувствительности детектора. По ряду причин это преимущество часто переоценивается. Кроме того, применение двухлучевых приборов связано с 3–5-кратной потерей света, что приводит к ухудшению соотношения сигнал/шум по сравнению с однолучевыми схемами.

Псевдо-двухлучевой спектрофотометр. По мере развития метода все большее распространение получают однолучевые спектрофотометры с характеристика-ми двухлучевых приборов (псевдо-двухлучевые спектрофотометры). В них световой пучок от источника пропускается либо через атомизатор, либо в обход его с помощью колеблющегося зеркала или устройства, заставляющего вибрировать атомизатор (рис. 2).

Рис. 2. Схема псевдо-двухлучевого спектрофотометра

Неселективное поглощение. Одним из важных узлов атомно-абсорбционного спектрофотометра является система коррекции сигнала на неселективное поглощение.

Под неселективным понимается поглощение, наблюдаемое в значительно более широком спектральном интервале, чем атомное, и обусловленное такими эффектами, как рассеяние света, молекулярная абсорбция и т. п. В присутствии неселективного поглощения измеряемый сигнал А складывается из собственно атомной абсорбции А и неселективного поглощения Ан.

Таким образом, система должна обеспечивать выделение чистого сигнала светопоглощения А=ААн. Устранение неселективного поглощения просто за счет температурной программы атомизатора (см. ниже) возможно лишь в редких случаях.



Загрузить файл

Похожие страницы:

  1. Экстракционно-фотометрический метод определения тяжелых металлов в природных водах

    Курсовая работа >> Экология
    ... концентрации алюминия. ГОСТ Р 51211-98 Вода питьевая. Методы определения содержания ПАВ. ГОСТ Р 51210-98 Вода питьевая. Метод определения содержания ... фенола и 2,4-дихлорфенола в питьевой и природной воде и фенола в сточной воде. ЦВ 1.04.44-00 "A" Методика ...
  2. Экологическая опасность сточных вод пищевой промышленности

    Дипломная работа >> Экология
    ... в приложении В. Наряду с химическими методами контроля осуществляется контроль токсичности природных и сточных вод с использованием действующих методик ...
  3. Флуориметрический метод контроля содержания нефтепродуктов в водах

    Статья >> Химия
    ... методом колоночной хроматографии на оксиде алюминия ... методам определения нефтепродуктов в природных и сточных водах. 2. СанПиН 2.1.4.559-96. Питьевая вода. Гигиенические требования к качеству воды ... . Вода питьевая. Метод определения содержания нефтепродуктов ...
  4. Определение ионов алюминия и меди (II) в сточной воде

    Курсовая работа >> Химия
    ... определению содержания алюминия(III) и меди(II) в сточной воде. Глава 1 ЛИТЕРАТУРНАЯ ЧАСТЬ Физико-химическая характеристика алюминия Алюминий ... 1974. – 335 с. Голосницкая, В.А. Анализ природных и сточных вод/В.А.Голосницкая. – Новочеркасск: Химия, 1979. – 84 ...
  5. Очистка нефтесодержащих сточных вод

    Курсовая работа >> Экология
    ... сточных вод могут быть использованы различные глины, алюминий ... аппаратах. Метод позволяет очищать сточные воды с высоким содержанием ПАВ ... , однако, определенно сложившиеся схемы ... Паль Л.Л. Справочник по очистке природных сточных вод. – М.: Высш. шк., ...

Хочу больше похожих работ...

Generated in 0.0018570423126221