Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

Экономика->Курсовая работа
Современное рыночное хозяйство невозможно представить без государственного вмешательства Проблема государственного вмешательства в экономику является,...полностью>>
Экономика->Контрольная работа
Малое предприятие определяет свое место в хозяйственном механизме в тот момент, когда определяет собственную экономическую стратегию Экономическая стр...полностью>>
Экономика->Курсовая работа
На протяжении последних лет туризм является важной отраслью мировой экономики По оценкам Всемирного совета по туризму и путешествиям в 2008 г доля тур...полностью>>
Экономика->Контрольная работа
Пушнина была стержнем сибирской торговли, но отправлявшиеся за Урал купцы рассчитывали не только на куплю-продажу «мягкой рухляди» Многие закупали в С...полностью>>

Главная > Контрольная работа >Экономика

Сохрани ссылку в одной из сетей:

Министерство образования и науки Российской Федерации

Марийский государственный технический университет

Кафедра экономики и финансов

Контрольная работа
по дисциплине

«Управление портфелем ценных бумаг»

на тему

«Модели выбора оптимального
портфеля ценных бумаг»

Выполнили: студентки группы
ЗФК –31(2 высшее)
Е.А.Решетова
С.И.Попадюк

Проверила: Т.Н.Бобкова

Йошкар-Ола

2004 г.

Содержание:

Введение

  1. Портфельный анализ

    1. Выбор оптимального портфеля

    2. Границы местоположения портфелей

    3. Рыночная модель

1.4 Графическое представление рыночной модели

1.5 Диверсификация

2 Модель Марковица

2.1 Определение состава оптимального портфеля

3 Метод, основанный на рыночной модели

Введение

Основная задача, которую необходимо решить при фор­мировании портфеля ценных бумаг, — распределение инвестором опре­деленной денежной суммы по различным альтернативным вложениям (например, акции, облигации, наличные деньги и др.) так, чтобы наи­лучшим образом достичь своих целей.

Портфель ценных бумаг — совокупность ценных бумаг, принадле­жащих физическому или юридическому лицу, выступающая как целост­ный объект управления, имеющая своей целью улучшать условия инве­стирования, придав данной совокупности такие инвестиционные харак­теристики, которые недостижимы с позиции отдельно взятой ценой бумаги и возможны только при их комбинации.

Тип портфеля — это его инвестиционная характеристика, основан­ная на соотношении дохода и риска.

В первую очередь инвестор стремится к получению максимального дохода за счет выигрыша от благоприятного изменения курса акций, ди­видендов, получения твердых процентов и т.д. С другой стороны, любое вложение капитала связано не только с ожиданием получения дохода, но и с постоянной опасностью проигрыша, а значит, в оптимизационных за­дачах по выбору портфеля ценных бумаг необходимо учитывать риск.

В принципе для создания портфеля ценных бумаг достаточно инвестиро­вать деньги в какой-либо один вид финансовых активов. Но современная экономическая практика показывает, что такой однородный по содержанию портфель (не диверсифицированный) встречается очень редко. Гораздо более распространенной формой является так называемый диверсифицированный портфель, т.е. портфель с самыми разнообразными ценными бумагами.

Портфель, состоящий из акций разноплановых компаний, обеспечивает стабильность получения положительного результата. Нынешнее состояние финансового рынка заставляет быстро и адек­ватно реагировать на его изменения, поэтому роль управления инвести­ционным портфелем резко возрастает и заключается в нахождении той грани между ликвидностью, доходностью и рискованностью, которая позволила бы выбрать оптимальную структуру портфеля. Этой цели служат различные модели выбора оптимального портфеля.

1. Портфельный анализ

Теорема об эффективном множестве

Инвестор выберет свои оптимальный портфель из множества портфелей,
каждый из которых

1. Обеспечивает максимальную ожидаемую доходность для некоторого уровня риска.

2. Обеспечивает минимальный риск для некоторого значения ожидаемой доходности.

Набор портфелей, удовлетворяющих этим двум условиям, называется эффективным множеством, или эффективной границей.

Достижимое множество

Достижимое множество представляет собой все портфели, кото­рые могут быть сформированы из группы в N ценных бумаг. Это означает, что все возмож­ные портфели, которые могут быть сформированы из N ценных бумаг, лежат либо на гра­нице, либо внутри достижимого множества (точки G, E, S и H на рис. 1 являются при­мерами таких портфелей). В общем случае, данное множество будет иметь форму типа зонта, подобную изображенной на рисунке. В зависимости от используемых ценных бумаг, оно может быть больше смещено вправо или влево, вверх или вниз, кроме того, оно может быть шире или уже приведенного здесь множества.

Теорема об эффективном множестве в применении к достижимому множеству

Теперь мы можем определить местоположение эффективного множества, применив теорему об эффективном множестве к достижимому множеству. Сначала выделим мно­жество портфелей, удовлетворяющих первому условию теоремы об эффективном мно­жестве. Если посмотреть на рис.1, то можно заметить, что не существует менее ри­скового портфеля, чем портфель Е. Это объясняется тем, что если провести через E вертикальную прямую, то ни одна точка достижимого множества не будет лежать левее данной прямой. При этом не существует более рискового портфеля, чем портфель H. Это объясняется тем, что если провести через H вертикальную линию, то ни одна точка достижимого множества не будет лежать правее данной прямой. Таким образом, мно­жеством портфелей, обеспечивающих максимальную ожидаемую доходность при изме­няющемся уровне риска, является часть верхней границы достижимого множества, расположенная между точками Е и Н.

Рис.1 Достижимое и эффективное множество

Рассматривая далее второе условие, можно заметить, что не существует портфеля, обеспечивающего большую ожидаемую доходность, чем портфель S, потому что ни одна из точек достижимого множества не лежит выше горизонтальной прямой, прохо­дящей через S. Аналогично, не существует портфеля, обеспечивающего меньшую ожи­даемую доходность, чем портфель G, потому что ни одна из точек достижимого множе­ства не лежит ниже горизонтальной прямой, проходящей через G. Таким образом, множеством портфелей, обеспечивающих минимальный риск при изменяющемся уровне ожидаемой доходности, является часть левой границы достижимого множества, распо­ложенная между точками S и G.

Учитывая то, что оба условия должны приниматься во внимание при определении эффективного множества, отметим, что нас удовлетворяют только портфели, лежащие на верхней и левой границе достижимого множества между точками Е и S. Соответст­венно эти портфели составляют эффективное множество, и из этого множества эффек­тивных портфелей (efficient portfolios) инвестор будет выбирать оптимальный для себя. Все остальные достижимые портфели являются неэффективными портфелями (inefficient portfolios), поэтому мы их можем игнорировать.

1.1.Выбор оптимального портфеля

Инвестор должен нарисовать свои кривые безразличия на одном рисунке с эффективным множеством, а затем приступить к выбору портфеля, располо­женного на кривой безразличия, находящейся выше и левее остальных. Этот портфель

Рис. 2. Выбор оптимального портфеля

будет соответствовать точке, в которой кривая касается эффективного множества. Как это видно из рис. 2, таким портфелем является портфель О* на кривой безразличия I2. Несомненно, что инвестор предпочел бы портфель, находящийся на кривой I3, но такого достижимого портфеля просто не существует. Желание находиться на какой-то конкретной кривой не может быть реализовано, если данная кривая нигде не пересекает множество достижимости. Что касается кривой I1 то сущест­вует несколько портфелей, которые может выбрать инвестор (например, О). Однако рисунок показывает, что портфель О* является наилучшим из этих портфелей, так как он находится на кривой безразличия, расположенной выше и левее. Рисунок 3 по­казывает, что инвестор с высокой степенью избегания риска выберет портфель, рас­положенный близко к точке Е. Рисунок 4 показывает, что инвестор с низкой сте­пенью избегания риска выберет портфель, расположенный близко к точке S.

Кривые безразличия для инвестора, избегаю­щего риск, выпуклы и имеют положительный наклон. Эффек­тивное множество в общем случае вогнуто и имеет положительный наклон, т.е. отре­зок, соединяющий любые две точки эффективного множества, лежит ниже данного множества. Это свойство эффективных множеств является очень важным, так как оно означает, что существует только одна точка касания эффективного множества и кривых безразличия.

рис.3. Выбор портфеля инвестором с высокой степенью избегания риска









Рис. 4. Выбор портфеля инвестором с низкой степенью избегания риска

Проблемы, возникающие при использовании «оптимизаторов»

Предположим, что капитан современного комфортабельного лайнера принимает решение не использовать современную навигационную систему (систему, которая с по­мощью компьютеров и спутников опреде­ляет местоположение корабля с точностью до нескольких футов). Вместо этого он собирается положиться на метод навигации по звездам - старинный метод, имеющий проблемы и приводящий к неточностям. Большинство людей будут считать выбор капитана в лучшем случае эксцентричным, в худшем - чрезвычайно опасным.

Когда дело касается формирования портфелей, большинство менеджеров по инвестициям делают свой выбор аналогично капитану данного судна. Они отрицают методы формирования портфелей, основанные на использовании компьютеров, и используют традиционные подходы. Являются ли их решения настолько же глупыми, как и решения капитана корабля? Или, может быть, данный подход продиктован их очевидным сумасшествием?

Концепция эффективного множества и оптимального портфеля инвестора являются основополагающими в современной инвестиционной теории. В начале 50-х годов Гарри Марковиц описал решение данных проблем. Используя математический метод известный как квадратичное программирование инвестор может обработать ожидаемые доходности, стандартные отклонения и ковариации для определения эффективного множества. Имея оценку своих кривых безразличия, отражающую их индивидуальный допустимый риск, он может затем выбрать портфель из эффективного множества.

С появлением дешевых и высокопроизводительных компьютеров в 80-х годах, а также с развитием сложных моделей риска стало возмож­ным определение эффективного множества для нескольких тысяч ценных бумаг за несколько минут. Необходимое компьютерное оборудование и программное обеспечение являются доступными фактически для лю­бого инвестиционного института. В действи­тельности данный процесс стал настолько банальным, что даже приобрел собственную терминологию. Использование компьютера для определения эффективного множества и формирования оптимального портфеля в разговорном языке называется оптимизаци­ей. Портфели «оптимизируются», а про ин­весторов говорят, что они применяют оп­тимизационную технику.



Загрузить файл

Похожие страницы:

  1. Оптимальный портфель ценных бумаг

    Курсовая работа >> Финансы
    ... Глава 1. Оптимальный портфель Портфельное инвестирование Основы формирования портфеля ценных бумаг Модели выбора оптимального портфеля ценных бумаг 1.3.1 Модель Марковитца 1.3.2 Индексная модель Шарпа 1.3.3 Модель выравненной цены (Arbitrageprais ...
  2. Управление портфелем ценных бумаг. Портфельные стратегии

    Курсовая работа >> Финансовые науки
    ... выбора портфеля для решения специфических инвестиционных задач. Для этого используются различные портфели ценных бумаг ... Ширяев В.И. Модели финансовых рынков. Оптимальные портфели, управление финансами и рисками. – М.: КомКнига, 2007 Рынок ценных бумаг /Под ...
  3. Формирование и управление портфелем ценных бумаг предприятия на примере ОАО Елецгидроагрегат

    Дипломная работа >> Финансы
    ... портфеля ценных бумаг 3.1 Формирование оптимальной структуры портфеля долевых и долговых ценных бумаг Перед нами была поставлена задача осуществить выбор ...
  4. Теория и методология портфельного инвестирования на российском рынке ценных бумаг

    Реферат >> Финансы
    ... портфеля ценных бумаг дополнена элементами функциональной формализации конфигурации кривой безразличия инвестора; - предложена модель ... 0,75 п.л. Кох И.А. Формализация алгоритма выбора оптимального портфеля ценных бумаг // В кн.: Современный финансовый рынок ...
  5. Формирование портфеля ценных бумаг (2)

    Реферат >> Экономическая теория
    ... портфеля………………………10-17 2.5.Эффективность портфеля ценных бумаг…….17-19 2.6.Модели портфельного инвестирования………19-24 2.7.Риск портфеля ценных бумаг ... Для того чтобы сформировать оптимальный портфель ценных бумаг необходимо разработать инвестиционную ...

Хочу больше похожих работ...

Generated in 0.0019609928131104