Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

Биология->Реферат
Совокупность функций м/п связей реализуется в проц.обуч-я при осущ-и многообразия их видов. Различают 2 гр. м/п связей: 1) внутрицикловые ( физ., хим....полностью>>
Биология->Реферат
Внешний вид. Спинная сторона черная, брюшко белое или рыжеватое, надхвостье черное или рыжеватое, хвост у взрослых птиц с длинными и тонкими крайними ...полностью>>
Биология->Реферат
Взаимоотношения природы и общества нельзя рассматривать вне противоречий, неизбежно возникающих и существующих между ними. История совместного существ...полностью>>
Биология->Контрольная работа
Наука – это особый вид человеческой познавательной деятельности, направленный на получение, уточнение и производство объективных, системно-организован...полностью>>

Главная > Реферат >Биология

Сохрани ссылку в одной из сетей:

Успешное развитие современной микробиологии невозможно без гармонического сочетания исследований, проводимых на популяционном, клеточном, органном и молекулярном уровнях. Для исследования морфологии и цитологии микроорганизмов разработаны новые виды микроскопической техники. Так, в СССР был изобретён метод капиллярной микроскопии, позволивший открыть новый, ранее не доступный для наблюдения мир микроорганизмов, обладающих своеобразной морфологией и физиологией.

Для изучения обмена веществ и химического состава микроорганизмов получили распространение различные методы физикохимической биологии: хроматографии, массспектрометрия, метод изотопных индикаторов, электрофорез. С помощью электронного микроскопа стало возможным изучение тонких особенностей строения цитоплазматических мембран и рибосом, их состава и функций (например, роль цитоплазматических мембран в процессах транспорта различных веществ или участие рибосом в биосинтезе белка).

Широкое распространение получило непрерывное культивирование микроорганизмов, основанное на постоянном притоке свежей питательной среды и оттоке жидкой культуры. Установлено, что наряду с размножением клеток (ростом культуры) происходит развитие культуры, т. е. возрастные изменения у клеток, составляющих культуру, сопровождающиеся изменением их физиологии. Примером может служить тот факт, молодые клетки, даже интенсивно размножаясь, не способны синтезировать многие продукты жизнедеятельности, например ацетон, бутанол, антибиотики, образуемые более старыми культурами. Современные методы изучения физиологии и биохимии микроорганизмов дали возможность расшифровать особенности их энергетического обмена, пути биосинтеза аминокислот, многих белков, антибиотиков, некоторых липидов, гормонов и др. соединений, а также установить принципы регуляции обмена веществ у микроорганизмов.

Практическое значение микробиологии. В настоящее время весьма велика роль прикладных исследований в области микробиологии. Еще в глубокой древности, за несколько тыс. лет до возникновения микробиологии как науки человек, не зная о существовании микроорганизмов, широко применял их для приготовления кумыса и др. кисломолочных продуктов, получения вина, пива, уксуса, при силосовании кормов, мочке льна.
Микроорганизмы играют важнейшую роль в плодородии почв, в продуктивности водоёмов, в образовании и разрушении залежей полезных ископаемых. Особенно важна способность микроорганизмов минерализовать органические остатки животных и растений. Всё возрастающее применение микроорганизмов в практике привело к возникновению микробиологической промышленности и к значительному расширению микробиологических исследований в различных отраслях промышленности и сельского хозяйства. С середины 19 в. до 40х гг. 20 в. техническая микробиология в основном изучала различные брожения, а микроорганизмы использовались преимущественно в пищевой промышленности. С 40х гг. быстро развиваются новые направления технической микробиологии, которые связаны с появлением нового поколения оборудования и аппаратуры. Выращивание микроорганизмов стали проводить в закрытых ферментёрах большой ёмкости, совершенствовались методы отделения клеток микроорганизмов от культуральной жидкости, выделения из последней и химической очистки их продуктов обмена.

Одним из первых возникло и развилось производство антибиотиков. В широких масштабах микробиологическим путём получают аминокислоты (лизин, глутаминовая кислота, триптофан и др.), ферменты, витамины, а также кормовые дрожжи на непищевом сырье (сульфитные щелока, гидролизаты древесины, торфа и сельскохозяйственные растительные отходы, углеводороды нефти и природного газа, фенольные или крахмалсодержащие сточные воды и т.д.). Осуществляется получение микробиологическим путём полисахаридов и осваивается промышленный биосинтез липидов.
Резко возросло применение микроорганизмов в сельском хозяйстве. Увеличилось производство бактериальных удобрений, в частности нитрагина, приготовляемого из культур клубеньковых бактерий, фиксирующих азот в условиях симбиоза с бобовыми растениями, и применяемого для заражения семян бобовых культур. Новое направление сельскохозяйственной микробиологии связано с микробиологическими методами борьбы с насекомыми и их личинками - вредителями сельскохозяйственных растений и лесов. Найдены бактерии и грибы, убивающие своими токсинами этих вредителей, освоено производство соответствующих препаратов.
Высушенные клетки молочнокислых бактерий используют для лечения кишечных заболеваний человека и сельскохозяйственных животных.
Известно, что деление микроорганизмов на полезных и вредных условно, т.к. оценка результатов их деятельности зависит от условий, в которых она проявляется. Так, разложение целлюлозы микроорганизмами важно и полезно в растительных остатках или при переваривании пищи в пищеварительном тракте (животные и человек не способны усваивать целлюлозу без её предварительного гидролиза микробным ферментом целлюлазой). В то же время эти же микроорганизмы разрушают рыболовные сети, канаты, картон, бумагу, книги, хлопчатобумажные ткани и т.д. Даже болезнетворные микроорганизмы не могут быть отнесены к абсолютно вредным, т.к. из них приготовляют вакцины, предохраняющие животных или человека от заболеваний.
Микроорганизмы используются, когда возникает необходимость ускорить разложение определённых химических веществ, например пестицидов, в почве. Велика роль мик- оорганизмов при очистке сточных вод (минерализация веществ, содержащихся в сточных водах).

2. Инженерная энзимология

Инженерная энзимология - это новое научнотехническое направление, появление которого связано с необходимостью интенсификации биотехнологических процессов.
Задачи инженерной энзимологии - конструирование органических катализаторов (энзимов) с заданными свойствами на основе ферментов и полиферментных систем, выделенных из клеток или находящихся в них.
Термин "заданные свойства" имеет в виду, что эти свойства задаются практическими потребностями в данном катализаторе, условиями проведения ферментативного процесса, специфичностью, необходимой производительностью и т.д.
Инженерная энзимология основана на принципах органического и ферментативного катализа, химической технологии, биотехнологии и биохимии и со времени своего зарождения целиком обращена к практике.
Хотя основная направленность современной инженерной энзимологии - спользование каталитической активности иммобилизованных (см. ниже) ферментов и клеток, ее рамки гораздо шире. Цель этой дисциплины - ботка научных основ применения ферментных катализаторов для создания новых биотехнологических производств, новых методов в диагностике и терапии, органическом синтезе и др., а также решение фундаментальных проблем энзимологии при помощи иммобилизованных ферментов.

Практические разработки в области инженерной энзимологии связаны с решением следующих задач:
· получением нового продукта;
· улучшением качества известного продукта;
· повышением экономичности биотехнологического процесса.

Иммобилизованные ферменты.

Ферменты в качестве биологических катализаторов применяются в различных отраслях промышленности - щевой, текстильной, фармацевтической, кожевенной, в медицине, сельском хозяйстве, в тонком органическом синтезе и т.д. Более широкое использование ферментов в биотехнологии до последнего времени сдерживалось вследствие ряда причин, а именно:
· трудоемкости отделения ферментов от исходных реагентов и продуктов реакции;
· нестабильности ферментов при хранении и при действии различных факторов;
· высокой стоимости чистых ферментных препаратов.

Создание биокатализаторов нового поколения - ммобилизованных, т.е. связанных ферментов открыло перед прикладной энзимологией новые перспективы.
Иммобилизация фермента - это методический прием, при котором молекулу биокатализатора включают в какуюлибо фазу, отделенную от фазы свободного раствора, но способную обмениваться с ней молекулами субстрата, эффектора или ингибитора. В качестве такой фазы может применяться, например, уголь (это установлено еще в 1916 г. Дж. Нельсоном и Е. Гриффином). В 1959 г. был применен принципиально новый методический прием - ковалентное связывание. С этого времени и ведется целенаправленная разработка гетерогенных катализаторов на основе ферментов.
Иммобилизованные ферменты имеют существенные преимущества. Так, например, они легко отделимы от реакционной среды. Это дает возможность остановить реакцию в любой момент, получить продукт, незагрязненный катализатором, и использовать ферментный препарат многократно. Иммобилизованные ферменты технологичны, что определяется возможностью вести биотехнологический процесс непрерывно и регулировать скорость катализируемой реакции и выход продукта путем изменения скорости протока. Подбором соответствующих носителей и методов иммобилизации можно целенаправленно модифицировать такие свойства ферментов, как специфичность, рН- температурозависимость, а также стабильность фермента при денатурирующих воздействиях.
Успешное использование иммобилизованных ферментов в значительной мере определяется выбором подходящего сочетания носителя и метода иммобилизации, а также знанием кинетики реакций с участием таких катализаторов.

Применение иммобилизованных ферментов.

Иммобилизованные ферменты можно использовать, главным образом, в трех направлениях:

1. Анализ различных веществ, в качестве лечебных средств и биокатализато- ов для использования в биотехнологических производствах.

2. Лечебные средства. Такие средства применяются либо в том случае, когда необходимый фермент отсутствует в тканях, вследствие генетических или других нару- ений, либо в качестве агентов, разрушающих нежелательные компоненты, например, мочевину. Использование чужеродных (бактериальных) ферментов зачастую нежелательно, вследствие того, что они могут стать причиной аллергических реакций и, кроме того, они крайне неустойчивы. Иммобилизация позволяет обойти эти барьеры, так как она повышает стабильность фермента и препятствует его взаимодействию с иммунной системой макроорганизма. Например, в аппарате "искусственная почка", предназначенном для освобождения крови от различных шлаков, в том числе и мочевины, путем ультрафильтрации, используется колонка с иммобилизованной уреазой. Ферменты применяют в лечебных целях и тогда, когда они необходимы, но по причине различных патологических процессов отсутствуют, например, для растворения кровяных тромбов.

3. Применение в различных производствах. Иммобилизованные ферменты широко используются в бумажной, текстильной, химической и фармацевтической промышленности, а также для обработки сточных вод.

3. Перспективы биотехнологии и проблемы биологической безопасности. Биоэтика

3.1. Генная и клеточная инженерия

Двадцать первый век часто называют веком биологии, имея в виду, что прикладное значение открытий, сделанных за последние десятилетия в биологии, и, в первую очередь, в таких науках как генетика и молекулярная биология. Последние, в свою очередь, являются теоретической основой для таких прикладных дисциплин как генная и клеточная инженерия.
Генная инженерия, или технология рекомбинантных ДНК - это изменение с помощью биохимических и генетических методик хромосомного материала - основного наследственного вещества клеток. Известно, что хромосомный материал состоит из дезоксирибонуклеиновой кислоты (ДНК). Биологи изолируют те или иные участки ДНК, соединяют их в новых комбинациях и переносят из одной клетки в другую. В результате удается осуществить такие изменения генома, которые естественным путем вряд ли могли бы возникнуть. Фактически генная инженерия занимается тем, что берет гены и части ДНК одного вида, например, рыбы, и пересаживает их в клетки другого, на- мер, помидора. Для этого генная инженерия располагает набором различных технологий для того, чтобы разрезать ДНК произвольно или в определенных участках гена. Выделив сегмент ДНК, можно его изучать, размножать или склеивать с ДНК других клеток и организмов. Генная инженерия позволяет преодолеть межвидовые барьеры и перемешивать информацию между абсолютно не связанными между собой видами.
В настоящее время научились уже переносить гены от одного животного к другому и от животного к растениям. Получены "трансгенные" мыши, свиньи, овцы, коровы и рыбы. ДНК можно прямо инъецировать в оплодотворенное яйцо вида- еципиента, или можно использовать в качестве переносчика вирус, который, проникнув в клетку, внесет с собой и нужный ген. Третий метод связан с использованием неспециализированных стволовых (т.е. родоначальных) клеток эмбриона. Гены вводят в стволовые клетки путем инъекции или с помощью вируса, и полученные в результате трансгенные клетки инъецируют другому зародышу, который включает эти чужие клетки в свои ткани. Гены человека вводили и в растения, например в табак, в надежде получить таким способом большие количества нужных белков, в частности антител и ферментов. В этих экспериментах перенос генов оказался довольно простым делом. Была придумана специальная "генная пушка", выстреливающая ДНК прямо в листья растений.
Практическое применение генной инженерии. Современные технологии позволяют синтезировать гены, и с помощью таких синтезированных генов, введенных в бакте- , получают ряд весьма важных биологических веществ. Их производство составило важную отрасль биотехнологии.
Методом генной инженерии уже получен уже ряд препаратов, в том числе инсулин человека и противовирусный препарат интерферон. И хотя эта технология еще только разрабатывается, она сулит достижение огромных успехов и в медицине, и в сельском хозяйстве. В медицине, например, это весьма перспективный путь создания и производства вакцин. В сельском хозяйстве с помощью рекомбинантной ДНК могут быть получены сорта культурных растений, устойчивые к засухе, холоду, болезням, насекомымвредителям и гербицидам.
Интерферон - белок, синтезируемый организмом в ответ на вирусную инфекцию, изучают сейчас как возможное средство лечения рака и СПИДа. Понадобились бы тысячи литров крови человека, чтобы получить такое количество интерферона, какое дает всего один литр бактериальной культуры. Ясно, что выигрыш от массового производства этого вещества очень велик. Очень важную роль играет также получаемый на основе микробиологического синтеза инсулин, необходимый для лечения диабета. Методами генной инженерии удалось создать и ряд вакцин, которые испытываются сейчас для проверки их эффективности против вызывающего СПИД вируса иммунодефицита человека (ВИЧ). С помощью рекомбинантной ДНК получают в достаточных количествах и человеческий гормон роста, единственное средство лечения редкой детской болезни - гипофизарной карликовости.
Еще одно перспективное направление в медицине, связанное с рекомбинантной ДНК, - т.н. генная терапия. В этих работах, которые пока еще не вышли из экспериментальной стадии, в организм для борьбы с опухолью вводится сконструированная по методу генной инженерии копия гена, кодирующего мощный противоопухолевый фермент. Генную терапию начали применять также для борьбы с наследственными нарушениями в иммунной системе.
В сельском хозяйстве удалось генетически изменить десятки продовольственных и кормовых культур. В животноводстве использование гормона роста, полученного биотехнологическим путем, позволило повысить удои молока; с помощью генетически измененного вируса создана вакцина против герпеса у свиней.
Генная терапия. В последнее десятилетие в биомедицинскую практику вошло понятие генной терапии. Под генной терапией понимается комплекс методов, позволяющих вводить "лечебные" гены в клетки живого организма для компенсации существующих и профилактики возможных патологических процессов.
В настоящее время проводятся широкие клинические испытания генотерапевтических подходов в лечении таких заболеваний, как рак, иммунодефицит и др. Эту деятельность следует приветствовать и поддерживать, чтобы, если вы, к несчастью, не имеете "хороших" генов от рождения, в один прекрасный день смогли бы купить их в ближайшей аптеке [6].
Но есть и оборотная сторона медали. Несмотря на явную пользу от генетических исследований и экспериментов, само понятие "генная инженерия" породило различные подозрения и страхи, стало предметом озабоченности и даже политических споров. Мно- гие опасаются, например, что какойнибудь вирус, вызывающий рак у человека, будет введен в бактерию, обычно живущую в теле или на коже человека, и тогда эта бактерия будет вызывать рак. Возможно также, что фрагмент ДНК, несущий ген устойчивости к лекарственным препаратам, введут в пневмококк, в результате чего пневмококк станет устойчивым к антибиотикам и пневмония не будет поддаваться лечению. Такого рода опасности, несомненно, существуют.
В современной генной терапии в ряде случаев в качестве векторов для доставки генов используются модифицированные вирусы, которые в естественных условиях в ходе инфекции используют клетки организма для саморепликации, что в итоге приводит к раз- ушению зараженных клеток и высвобождению миллионов копий исходного вируса.

В естественных условиях борьбу с вирусами осуществляет система иммунитета, которая узнает зараженные клетки и уничтожает их еще до образования вирусного потомства. В генной терапии вирусы модифицируются таким образом, что они теряют способность к размножению в клетках организма. В их геноме исключается некоторый участок, существенный для репликации вируса. Вместо него вставляется "лечебный" ген. Такой вирус способен проникать в клетки и обеспечивать экспрессию гена, ответственно- го за терапевтический эффект, при этом не происходит размножения вируса и, следовательно, разрушения клетки. Тем не менее, иммунная система воспринимает такие клетки как чужеродные и уничтожает их. С этим связана одна из основных проблем современной генотерапии, так как для устойчивого терапевтического действия введенного гена необходима его длительная экспрессия. Поэтому усилия многих научных лабораторий направлены на преодоление этого иммунного барьера. С этой целью в геном вируса вводятся дополнительные гены, продукты которых обладают иммуносупрессивным, т.е. подавляющим иммунитет действием. Придание иммуносупрессивных свойств вирусным векторам также важно в генной терапии аутоиммунных заболеваний, в частности такого, как ревматоидный артрит.
Опасности генной терапии связаны с попаданием таких модифицированных вирусов в природную среду. При этом существует вероятность обмена генетической информации с вирусом дикого типа, что приведет к образованию нового вируса, способного разрушать клетки организма - вируса, который остается "невидимым" для иммунной системы. Если представить, что такой вирус будет передаваться воздушнокапельным путем, а симптомы будут проявляться только через период времени, в течение которого невозможно осуществлять тотальный карантин (например, один месяц), то последствия для человечества и биосферы могут стать катастрофическими.
Генетические исследования ведутся серьезными и ответственными учеными, а методы, позволяющие свести к минимуму возможность случайного распространения потенциально опасных микробов, все время совершенствуются. Оценивая возможные опасности, которые эти исследования в себе таят, следует сопоставлять их с подлинными трагедиями, вызванными недоеданием и болезнями, губящими и калечащими людей.



Загрузить файл

Похожие страницы:

  1. Концепции современного естествознания (33)

    Реферат >> Биология
    «КОНЦЕПЦИЯ СОВРЕМЕННОГО ЕСТЕСТВОЗНАНИЯ» Естествознание: определение, предмет изучения. Естественные науки. ... объектов нашего мира. Появление синергетики в современном естествознании инициировано, скорее всего, подготовкой глобального ...
  2. Концепции современного естествознания (29)

    Лекция >> Биология
    Концепции современного естествознания Лекция 13. Мегамир, основные космологические и ... пока нет возможности проверить выводы современных теорий применительно к какой-либо другой ...
  3. Концепции современного естествознания (34)

    Закон >> Биология
    В.М. Найдыш. Концепции современного естествознания.   Часть первая. Основные исторические периоды развития естествознания. 3.Создание ... самоорганизации 16. Глобальный эволюционизм Найдыш В.М.. Концепции современного естествознания. М., 1999. - С. 89-96, ...
  4. Концепции современного естествознания (28)

    Реферат >> Биология
    ... ЕН.Ф.08 Концепции современного естествознания :Естественнонаучная и гуманитарная культура; научный метод; история естествознания; панорама современного естествознания; тенденции ...
  5. Концепции современного естествознания (32)

    Курсовая >> Остальные работы
    ... Список литературы 24 Введение Дисциплина "Концепции современного естествознания" включена в цикл математических и ... Верешков, Г.М. - М.: МГУ, 2001. - 231 с. Лозовский, В.Н. Концепции современного естествознания [Текст]: учеб. пособие для студентов ...

Хочу больше похожих работ...

Generated in 0.0018908977508545