Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

Биология->Реферат
Возраст Земли, определенный различными методами, насчитывает 6-7 млрд лет, однако ни один из методов не является точным Должно было пройти около 3 млр...полностью>>
Биология->Доклад
Из них самый большой по времени – палеозой, он иногда разделяется на две части: ранний палеозой и поздний, так как астрономические, геологические, кли...полностью>>
Биология->Реферат
Аристотель, вероятно, был первым и величайшим из ученых-энциклопедистов, преуспевших во многих областях науки Он оставил сочинения на самые разные тем...полностью>>
Биология->Реферат
Все мы знаем, что произошло этим летом: аномальная жара, пожары, смог. И без того плохая экология стала еще хуже. Природа всегда помогала человеку выж...полностью>>

Главная > Реферат >Биология

Сохрани ссылку в одной из сетей:

2. Энтропия. Термодинамическая трактовка.

Итак, для идеальной машины Карно из формулы (2) следует

Q1/T1 = Q2/T2 или Q1/T1 - Q2/T2 = 0.

Для того, чтобы учесть, что Q2 отдается холодильнику, берем его со знаком “ - “. Тогда имеем:

Q1/T1 + Q2/T2 = 0

Далее будем писать DQ вместо Q, подчеркивая, что речь идет о некоторой порции DQ1, полученной рабочим телом от нагревателя и порции DQ2, потерянной им в холодильнике.

DQ1 1 + DQ22 = 0

Как видим, эта запись напоминает закон сохранения, но при этом появляется некоторая “интересная” величина DQ .

Так в физике появилось новое понятие «энтропия» (S, которая, подобно энергии, давлению, температуре, характеризует состояние газа. Когда к газу подводится некоторое количество DQ, то S возрастает на величину DS = DQ .

Ранее говорилось о том, что раньше не делалось различий между понятиями теплота и температура.

После введения понятия энтропии стало ясно, где пролегает эта граница. Дело в том, что нельзя говорить о том, что в теле заключено какое-то количество теплоты. Теплота может передаваться от тела к телу, переходить в работу, возникать при трении, но при этом она (теплота) не является сохраняющейся величиной. Поэтому теплота определяется в физике не как вид энергии, а как мера изменения энергии. А вот энтропия в обратимых процессах (в частности в идеальном цикле Карно) сохраняется. Энтропия, таким образом, характеризует состояние системы.

Можно провести некоторую аналогию с потенциальной энергией. Действительно, так же как каждому уровню высоты над поверхностью Земли отвечает своя потенциальная энергия, так и каждому состоянию термодинамической системы отвечает своя энтропия.

Как работа в поле тяжести (потенциальном поле) не зависит от вида пути, а зависит только от изменения потенциальной энергии, так и энтропия не зависит от вида процесса и определяется исключительно изменением состояния системы как конечным результатом процесса.

Все это означает, что энтропия системы может рассматриваться как функция состояния системы, т.к. изменение ее не зависит от вида процесса, а определяется лишь начальным и конечным состоянием системы.

Итак, для обратимых процессов имеем DS=сonst. , т.е. энтропия изолированной системы в случае обратимых процессов постоянна.

Заметим, что для осуществления необратимого процесса необходимо добиться очень медленного расширения или сжатия рабочего тела, чтобы изменения системы представляли собой последовательность равновесных состояний. В таком цикле совершение любой полезной работы потребует практически бесконечно большого времени. Чтобы получить работу за короткие, т.е. приемлемые промежутки времени (хорошую мощность), приходится «уходить» от идеального цикла. Это приведет к неодинаковости температуры на разных участках цикла, к перетеканию тепла от более горячих участков к менее горячим и, следовательно, к возрастанию энтропии DS>0.

Понятие энтропии позволяет определить направление протекания процессов в природе. Тот факт, что энтропия изолированной системы не может убывать, а только возрастает, является отражением того, что в природе существуют процессы, протекающие только в одном направлении - в направлении передачи тепла от более горячих тел к менее горячим.

1. Теперь мы можем полностью определиться с формулировками II Начала термодинамики. Существует ряд его формулировок:

2. В природе невозможны такие процессы, единственным конечным результатом которых был бы переход тепла от менее нагретого к более нагретому.

3. КПД любой тепловой машины всегда <100%, т.е. невозможен вечный двигатель (perpetuum mobile) II рода (т.к. невозможно построить тепловую машину, работающую не за счет перепада теплоты, а за счет теплоты одного нагревателя.

4. Энтропия изолированной системы не убывает (т.е. при протекании обратимых процессов энтропия постоянна, а при необратимых процессах она возрастает). Энтропия системы, находящейся в равновесном состоянии максимальна и постоянна.

Все, что выше говорилось об энтропии связано с ее т.н. термодинамической трактовкой, т.е. объяснения с позиций термодинамики. Все, за исключением самой последней формулировки, касающейся равновесного состояния. Последняя связана также с таким понятием как вероятность. Рассмотрим эту связь подробнее.

3. Энтропия. Вероятностная трактовка.

Макроскопическое и микроскопическое описание объектов природы. Различные объекты и явления природы (системы) могут быть описаны как на микро-, так и на макроуровне, на основе их микросостояния или макросостояния. Сами понятия микро- и макро- отражают в какой-то степени наши представления о размерах объектов природы.

Макросостояние. Состояние макроскопического тела (системы), заданное с помощью макропараметров (параметров, которые могут быть измерены макроприборами – давления, температуры, объемом и другими макроскопическими величинами, характеризующими систему в целом), называют макросостоянием.

Микросостояние. Состояние макроскопического тела, охарактеризованное настолько подробно, что заданы состояния всех образующих тело молекул, называется микросостоянием.

Термодинамика, как уже говорилось, рассматривает тепловые процессы в системах на макроскопическом уровне, оперируя макропараметрами: температура, теплота, давление, объем. Статистическая физика, или молекулярно-кинетическая теория рассматривает тепловые явления на микроуровне – с точки зрения движения молекул – их скорости, кинетической энергии. Термодинамика, опираясь на понятие энтропии, четко различает обратимые и необратимые процессы. Способна ли не это статистическая физика? Другими словами, существует ли для микросостояния понятие аналогичное энтропии? Утвердительно ответить на этот вопрос позволили работы великого австрийского физика Людвига Больцмана, в которых отличие обратимых процессов от необратимых было сведено с макроскопического уровня на микроскопический.

Выделив некоторую молекулу в сосуде с теплоизолированными стенками и наблюдая за ней, мы убедимся, что она может занимать любой положение в сосуде. Если же мысленно разделить объем на две половины. В этом случае молекула, беспорядочно блуждая, сталкиваясь с другими молекулами, пробудет в одной половинке сосуда ровно половину времени, в течение которого мы ее наблюдаем. В этом случае говорят, что вероятность ее пребывания в одной из половинок сосуда равна ½. Вероятность может принимать значения от 0 до 1. Если же мы будет наблюдать уже за двумя мечеными молекулами, то вероятность того, что мы обнаружим сразу обе молекулы в одной половинке сосудаю, равна 1/2×1/2=1/4. Аналогично, для трех молекул эта вероятность (обозначим ее W) равна (1/2)3, а для N молекул W=(1/2)N. Т.е. вероятность стремительно падает. Таким образом, такое событие является маловероятным. Это понятно нам и на основе нашего жизненного опыта. Странно было бы, если бы все молекулы воздуха вдруг собрались бы в одной половине комнаты, а в другой образовалось безвоздушное пространство. Вероятность же того, что все молекулы находятся во всем объеме сосуда максимальна и равна 1. Вероятность определенного состояния системы связана с ее статистическим весом. Статистический вес - это число способов, которыми это состояние сожет быть реализовано. Когда все молекулы равномерно распределены по объему сосуда статистический вес также является максимальным.

Пусть в некоторый момент времени удалось загнать все молекулы в правую верхнюю часть сосуда, отделенную диафрагмой. Остальные ¾ этого объема остались пустыми. После того как мы уберем диафрагму молекулы равномерно заполнят весь объем сосуда, т.е. перейдут из состояния с меньшей вероятностью в состояние с большей вероятностью. Таким образом, мы и здесь можем сказать, что процессы в системе идут только в одном направлении: от некоторой структуры (порядка, когда молекулы содержались в верхнем правом углу объема сосуда) к полной симметрии (хаосу, беспорядку, когда молекулы могут занимать любые точки пространства сосуда). Последнее состояние можно назвать состоянием равновесия. Все это наводит на мысль, что должна существовать связь между вероятностью и энтропией.

Если мы рассмотрим две подсистемы какой либо системы, каждая из которых характеризуется своим статистическим весом W1 и W2, то полный статистический вес системы равен произведению статистических весов подсистем:

W = W1×W2,

а энтропия системы S равна сумме энтропии подсистем S = S1 + S2.

Это наталкивает на мысль, что связь статистического веса и энтропии должна выражаться через логарифм:

Ln W = Ln (WW2) = Ln W1 + Ln W2 = S1 + S2 .

Собственно, это и сделал Больцман, связав понятие энтропии S c Ln W. Уже позднее, в 1906 г. Макс Планк написал формулу, выражающую основную мысль Больцмана об интерпретации энтропии как логарифма вероятности состояния системы:

S = k Ln W.

Эта формула выгравирована на памятнике Больцману на венском кладбище.

Коэффициент пропорциональности k был рассчитан Планком и назван им постоянной Больцмана.

Контрольные вопросы

1. Кто из ученых сформулировал закон теплопроводности? Почему закон теплопроводности выходил за рамки классической ньютоновской механики?
2. Что такое идеальный цикл Карно? Из каких процессов он состоит?
3. Что такое адиабатический процесс? Запишите его уравнение.
4. Запишите выражение для КПД теплового двигателя КПД для цикла Карно при превращении тепла в работу.
5. Как зависит КПД теплового двигателя в цикле Карно от количества используемого газа, от начальных значений давления или объема?

6. Что такое вечный двигатель I рода?
7. Что такое вечный двигатель II рода?
8. Как называется величина DQ ? Кто ввел эту величину?
9. Что характеризует теплота?
10. Что характеризует энтропия?

11. Что произойдет с энтропией, если подвести к газу некоторое количество теплоты DQ?
12. Почему понятие энтропии позволяет определить направление процессов в природе?
13. Как зависит энтропия от вида процесса, происходящего в системе?
14. Как может изменяться энтропия изолированной системы?
15. Приведите формулировки II начала термодинамики.

16. Что такое микросостояние тела (системы)?
17. Что такое макросостояние?
18. На каком уровне - микро- или макро- рассматривает тепловые явления статистическая физика, или молекулярно-кинетическая теория?
19. На каком уровне - микро- или макро- рассматривает тепловые явления термодинамика?
20. Кем была рассмотрена необратимость процессов на микроскопическом уровне?

21. Что такое статистический вес системы?
22. Как интерпретируется понятие энтропии на микроскопическом уровне?

Литература

1. Концепции современного естествознания./ под ред. проф. С.А. Самыгина, 2-е изд. – Ростов н/Д: «Феникс», 1999.
2. Дягилев Ф.М. Концепции современного естествознания. – М.: Изд. ИМПЭ, 1998.
3. Дубнищева Т.Я.. Концепции современного естествознания. Новосибирск: Изд-во ЮКЭА, 1997.
4. Ремизов А.Н. Медицинская и биологическая физика. – М.: Высшая школа, 1999.

[1] Процесс 1-2 называется обратимым, если можно совершить обратный процесс 2-1 через все промежуточные состояния так, чтобы после возвращения системы в исходное состояние в окружающих телах не произошло каких-либо изменений. Идеальный цикл Карно является обратимым, однако все реальные процессы необратимы из-за наличия диссипативных сил. Примеры: расширение газа в пустоту, диффузия, теплообмен и т.д. Для возвращения системы в начальное состояние необходимо совершение работы внешними телами.

Лекция 8. Термодинамическая картина мира (III). Стрела времени

1. Вероятность как атрибут больших систем2. Стрела времени
3. Проблема тепловой смерти Вселенной и флуктуационная гипотеза Больцмана

Контрольные вопросы
Литература



Загрузить файл

Похожие страницы:

  1. Концепции современного естествознания (33)

    Реферат >> Биология
    «КОНЦЕПЦИЯ СОВРЕМЕННОГО ЕСТЕСТВОЗНАНИЯ» Естествознание: определение, предмет изучения. Естественные науки. ... объектов нашего мира. Появление синергетики в современном естествознании инициировано, скорее всего, подготовкой глобального ...
  2. Концепции современного естествознания (29)

    Лекция >> Биология
    Концепции современного естествознания Лекция 13. Мегамир, основные космологические и ... пока нет возможности проверить выводы современных теорий применительно к какой-либо другой ...
  3. Концепции современного естествознания (34)

    Закон >> Биология
    В.М. Найдыш. Концепции современного естествознания.   Часть первая. Основные исторические периоды развития естествознания. 3.Создание ... самоорганизации 16. Глобальный эволюционизм Найдыш В.М.. Концепции современного естествознания. М., 1999. - С. 89-96, ...
  4. Концепции современного естествознания (28)

    Реферат >> Биология
    ... ЕН.Ф.08 Концепции современного естествознания :Естественнонаучная и гуманитарная культура; научный метод; история естествознания; панорама современного естествознания; тенденции ...
  5. Концепции современного естествознания (32)

    Курсовая >> Остальные работы
    ... Список литературы 24 Введение Дисциплина "Концепции современного естествознания" включена в цикл математических и ... Верешков, Г.М. - М.: МГУ, 2001. - 231 с. Лозовский, В.Н. Концепции современного естествознания [Текст]: учеб. пособие для студентов ...

Хочу больше похожих работ...

Generated in 0.0019099712371826