Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

Коммуникации и связь->Реферат
В эпоху научно-технической революции связь стала составным звеном любого производственного процесса. Она используется для управления технологическими ...полностью>>
Коммуникации и связь->Реферат
Зарождение в начале прошлого века техники передачи электроэнергии по проводникам, получившим впоследствии общее название «электропровода», было связан...полностью>>
Коммуникации и связь->Реферат
Ни для кого не является секретом, что общение является важной частью ведения дел. Регулярно общаясь с коллегами, начальниками, подчиненными, клиентами...полностью>>
Коммуникации и связь->Реферат
Технологический процесс плавки в дуговых печах предполагает необходимость осуществления автоматического зажигания дуги на различных стадиях технологич...полностью>>

Главная > Дипломная работа >Коммуникации и связь

Сохрани ссылку в одной из сетей:

По закону Кирхгофа:

I= I- I ;

I=9.2-0.92= 8.28mA.

Рассчитаем резисторы R21, R22:

R22= U/ I;

R22=1.4B/8,28=169Ом;

U= U- U;

U=12-1.4=10.6B;

R21= U / I;

R21=10.6B/9.2mA= 1152Ом.

Из ряда Е24 выбираем:

R22=160Ом;

R21=1.2kОм.

На рис.3.2 видно, что ток I= I равняется току коллектора транзистора VT5 и VT2, а напряжение коллектора равняется Епит аккумулятора, т.е. равно12В.

Выберем транзисторы VT5 и VT2

Выбираем КТ816

I=3А , h=25.

U=40В , P=25Вт.

Найдем ток базы этих транзисторов по формуле:

I = I/ h;

I =9.2mA/25=0.37mA.

Рассчитаем напряжение базы, по формуле:

U= U-0.7B;

U=12-0.7=11.3B.

Примем, что ток через R19 будет в 10 раз больше чем I транзистора КТ816.

I=3.7mA.

Из этого следует, что:

I= I- I ;

I=3.7-0.37= 3.33mA.

Рассчитаем резисторы R19, R20:

R19=(Епит- U)/ I;

R19=(12В-11.3В)/3.7mA= 189,2Ом;

R20= U/ I;

R20=11.3В/3.33mA=3424 Ом.

Из ряда Е24 выбираем:

R20=3.3кОм;

R19=180Ом.

На рис.3.2 видно, что ток I= I равняется току коллектора транзистора VT4 и VT1, а напряжение коллектора равняется напряжению базы транзистора VT5 и VT2.

Выберем транзисторы VT4 и VT1

Выбираем КТ503 с параметрами:

I=0,15А , h=40.

U=40В , P=25Вт.

Найдем ток базы этих транзисторов по формуле:

I = I/ h;

I =3.33mA /40=82.5mkA.

Рассчитаем напряжение базы, по формуле:

U= 0.7B;

Так как в транзисторе VT4,VT1 падение напряжения на переходе эмиттер-база.

Рассчитаем резистор R18:

Напряжение через резистор R18 будет равняться разности потенциалов между напряжением базы и напряжением поступающем с микроконтроллера, равное Епит=5В.

R18=(Епит-U)/ I ;

R18=(5-0,7)/82.5mkA= 52121Ом.

Из ряда Е24 выбираем: R18=51кОм.

3.3 Компаратор

В разрабатываемой схеме моего дипломного проекта мы используем три одинаковых компаратора отвечающие за разными изменениями напряжения.

Схема приведина на рис.3.3.

Рис.3.3.Схема компаратора.

Компаратор1 проверяет наличия в сети напряжения 220В.После прохождения понижающего трансформатора Т1 и диодного моста сигнал поступает с подстроечного резистора R2 на не инвертируемый вход операционного усилителя. На инвертируемый вход сигнал поступает с аккумулятора и стабилизатора DA4.

Принцип работы заключается в том что, если напряжение на не инвертируемом входе больше, чем на инвертируемом, то на микроконтроллер PIC16F84 поступает два сигнала с аккумулятора и стабилизатора. Если сигнал с аккумулятора больше, то все в норме и она продолжает питать генератор. Если же напряжение на входе операционного усилителя с аккумулятора меньше, чем со стабилизатора, то это значит, что аккумулятор разряжен и происходит его зарядка. Вся эта информация передается на микропроцеcсор.

Компаратор2 проверяет уровень зарядки аккумулятора. Принцип работы такой же как у компаратора1.Выдает два уровня о том, что аккумулятор заряжен или о том, что аккумулятор разряжен и производится его подзарядка. Вся информация поступает на микроконтроллер.

Задача компаратора3 проверка выходного напряжения, оно должно ровняться 220В. Точно так же сигнал с трансформатора Т2 поступает на не инвертированный вход операционного усилителя и как только он становится ниже сигнала на инвертируемом входе (заметим, что сигнал на инвертируемом входе постоянен, т.е. не меняет своего значения, если не разряжен аккумулятор) это означает, что выходное напряжение меньше 220В.

Компаратор выполнен на базе операционного усилителя КР140УД1208, его характеристика:

U=3…18B. I=0.19mA.

U=6mВ. R=5MOм.

Рассчитаем резисторы R1,R2,R3,R4,R5:

Так как сигнал на инвертируемый вход подается с делителя R4,R5,то эти сопротивления выберем одинаковые по 10кОм. На сопротивление R4 подается напряжение 5В, то на инвертируемый вход будет подаваться 2.5B.

Относительно этого напряжения будем рассчитывать сопротивления R1,R2 и R3.

На рис.3.3 видно, что R2 подстроечный резистор, рассчитаем его пределы. Резисторы R1 и R3 будем выбирать таким образом, чтобы напряжение снимаемое с подстроечного резистора R2 было больше 2.5В, но не на много.

Выбираем R1=20кОм,R2=1 кОм,R3=10 кОм.

U1=12/2.1=5.71B;

U2=12/3.1=3.87B.

Пределы подстроичного сопротивления от 3,87В до 5,71В.

3.4 Реле

Рис.3.4.Схема двух контактного реле.

Когда компаратор1 проверяет наличие входного напряжения и если оно равно 220В и без перебоев, то включается реле и сигнал с входа сразу поступает на выход минуя основную схему. Если же наличие в сети 220В не оказалось или были замечены какие то перебои, то реле переключает входное напряжение на основную схему. И на выход подается сигнал с генератора.

На рис.3.4 видно, что вместе с реле используется транзистор VT7, работающий ключом. Открывается ключ и вместе с ним открывается реле.

Выбираем двух позиционное реле РЭС22.

U=12±1.2B

I=36мА

I=11мА

R=175(-17+26)Ом

t=12мс

t=5мс

Рассчитаем транзистор VT7. Так как на реле подается сигнал с понижающего трансформатора Т1, то ток вторичной обмотки будет равен току коллектора.

I= I=0.69A

U=12B

Транзистор выбираем КТ827:

I=20A , h=750;

U=60B , P=125Вт;

Найдем ток базы этих транзисторов, по формуле:

I = I/ h;

I =0.69/750=0.92mA.

Напряжение базы будет равно:

U= 0.7B.

Так как в транзисторе VT7 падение напряжения на переходе эмиттер-база.

Напряжение через резистор R28 будет равняться разности потенциалов между напряжением базы и напряжением поступающем с микроконтроллера, равное Епит=5В.

Рассчитаем резистор R28:

R28=(Епит-U)/ I ;

R28=(5-0,7)/0.92mA= 4673Ом.

Из ряда Е24 выбираем: R28=4.7кОм.

3.5 Блок индикации

Рис.3.5.Схема блока индикации.

На рис.3.5 видно, что блок индикации выполнен на двух световых диодах. Когда реле включено на работу вход-выход минуя основную схему, то горит один зеленый указывая, что прибор просто включен. Если же реле переключается на генератор, то дополнительно к зеленому загорается красный диод и подается звуковое оповещение указывающее на перебои в сети.

3.6 Описание контроллера PIC16F84

PIC16F84 относится к семейству КМОП микроконтроллеров. Отличается тем, что имеет внутреннее 1K x 14 бит EEPROM для программ, 8-битовые данные и 64байт EEPROM памяти данных. При этом отличаются низкой стоимостью и высокой производительностью. Пользователи, которые знакомы с семейством PIC16C5X могут посмотреть подробный список отличий нового от производимых ранее контроллеров. Все команды состоят из одного слова (14 бит шириной) и исполняются за один цикл (1 мкс при 4 МГц), кроме команд перехода, которые выполняются за два цикла (2 мкс). PIC16F84 имеет прерывание, срабатывающее от четырех источников, и восьмиуровневый аппаратный стек. Периферия включает в себя 8-битный таймер/счетчик с 8-битным программируемым предварительным делителем (фактически 16 - битный таймер) и 13 линий двунаправленного ввода/вывода. Высокая нагрузочная способность (25 мА макс. входной ток, 20 мА макс. выходной ток) линий ввода/вывода упрощают внешние драйверы и, тем самым, уменьшается общая стоимость системы. Разработки на базе контроллеров PIC16F84 поддерживается ассемблером, программным симулятором, внутрисхемным эмулятором (только фирмы Microchiр) и программатором.



Загрузить файл

Похожие страницы:

  1. Разработка универсального источника бесперебойного питания

    Дипломная работа >> Коммуникации и связь
    ... медицинской аппаратурой. К основным критериям разработки источника бесперебойного питания стоит отнести надежность и стойкость к ... будет вестись последующая разработка. К основным критериям разработки источника бесперебойного питания стоит отнести надежность ...
  2. Разработка автоматизированной системы управления электроснабжением КС "Ухтинская"

    Дипломная работа >> Физика
    ... уровня и при отключении пускателя электродвигателя. 1.1.3 Разработка интегрированной автоматизированной системы управления энергоснабжением ... 0,7 км 1 28050 143 55 Диспетчерская Источник бесперебойного питания 1 8410 168 56 Оптоэлектрический преобразователь ...
  3. Разработка системы Автоматизированное решение задач механики

    Дипломная работа >> Информатика
    ... комплекса технических средств могут входить: Источник бесперебойного питания; Аудиоконтроллер; Принтер; Сетевая карта; ... комплекта в производство. В разделе "Экономические обоснование разработки" рассчитаны основные параметры, характеризующие эффективность ...
  4. Разработка библиотеки для КОМПАС График Расчет и построение теплообменников

    Дипломная работа >> Информатика
    ... затраты времени конструктора при разработке сборочных и деталировочных машиностроительных ... Windows 2000. Для разработки подсистемы: «Разработка библиотеки типовых элементов ... Black G5 optical, PS/2 Источники бесперебойного питания UPS Mustek PowerMust 600 ...
  5. Разработка и автоматизация подсистемы Диетпитание для учета питания всех пациентов

    Реферат >> Информатика
    ... и проектных требований к создаваемой подсистеме. 2. Разработка технического задания. Разработка в соответствии со сформулированными требованиями ... Оборудование Сумма, руб. Сервер 100000 Источник бесперебойного питания 10000 Компьютеры 40000 Итого 150000 ...

Хочу больше похожих работ...

Generated in 0.0012350082397461