Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

Философия->Реферат
С первых шагов зарождавшейся философской мысли идея бытия служила логическим средствам представления мира как целостного образования. В процессе осмыс...полностью>>
Философия->Реферат
Мифология - мировоззрение общества эпохи охоты и собирательства, ранних форм земледелия. «Миф», в переводе с древнегреческого, - «слово», «рассказ». М...полностью>>
Философия->Реферат
второго тысячелетия до н. э. в государстве Шан-Инь (XVII-XII вв. до н. э.) возникает рабовладельческий уклад хозяйства. Труд рабов, в которых обращали...полностью>>
Философия->Реферат
Аристотель (384 - 322 г.г. до нашей эры) - великий греческий философ, систематически разработавший все отрасли знания своего времени, впервые установи...полностью>>

Главная > Книга >Философия

Сохрани ссылку в одной из сетей:

Для более детального выяснения роли внешней среды в явлениях самоорганизации обратимся к предметно--теоретическому описанию физико-химических систем. Для таких систем существует понятие равновесия, и из термодинамики известно, что в состоянии равновесия и вблизи него, в области линейной динамики систем, явления пространственно--временной самоорганизации невозможны. Поэтому неравновесность системы --- необходимое условие протекания этих явлений. Поскольку в соответствии со вторым законом термодинамики изолированная, т.е. предоставленная самой себе, система самопроизвольно переходит в равновесие, неравновесность всегда является результатом воздействия на систему внешней среды.

Это воздействие может заключаться в создании неравновесного начального состояния замкнутой физико-химической системы, как в случае рассмотренной выше реакции Белоусова---Жаботинского. Тогда явления самоорганизации будут формой перехода системы к равновесию и при приближении к последнему прекращаются. Воздействие внешней средина систему может заключаться в поддержании потоков обмена энергией, как в случае лазера, или веществом, как для химической реакции на твердой поверхности. Тогда явления самоорганизации могут протекать до тех пор, пока поддерживаются потоки.

Итак, воздействие внешней среды на систему --- необходимое условие протекания явлений пространственно--временной самоорганизации. Это обстоятельство фиксирует определение [24] класса систем, изучаемых синергетикой: это "открытые системы потокового типа". Открытость системы, наличие потоков обмена с внешней средой, достаточная интенсивность этих потоков ---необходимое условие возникновения упорядоченных пространственно--временных структур.

Потоки обмена со средой захватываются, трансформируются, структурируются системой. Соответственно возникающие структуры носят существенно динамический характер, являются пространственно--временными структурами, оформляющими взаимодействующие процессы. Отсюда виден относительный характер приведенного выше разделения структур на пространственные, временные и пространственно--временные. Это разделение фиксирует лишь внешние признаки структур. Действительно, стационарные, чисто пространственные структуры являются динамическими по своей природе. Их стационарность --- следствие не статичности системы, отсутствия или завершения протекающих в ней процессов, не сбалансированности и скоординированности этих процессов, что, в свою очередь, вытекает из сбалансированности потоков обмена системы с внешней средой и процессов внутри системы. Процессуальность стационарных пространственных структур определяет их временной характер. С другой стороны, однородные по пространству, названные выше временными, структуры являются следствие согласованного, синхронного протекания процессов в различных частях системы. Это определяет пространственный характер временных структур. Таким образом, возникающие в открытых системах структуры, вообще говоря, всегда являются пространственно--временными.

Если использовать толкование понятия самоорганизации, вытекающее из его лингвистического построения, то самоорганизующейся системой является система, которая "сама себя организует". Имея ввиду это непосредственное толкование, зададимся вопросом: в какой степени правомочно говорить об образовании пространственно--временных структур как о проявлении самоорганизации системы, коль скоро воздействие внешней среды, как обсуждалось выше, играет столь существенную роль в протекании этих явлений? Использованные системные представления о потоках обмена системы с внешней средой позволяют достаточно строго ответить на него: о самоорганизации системы можно говорить в том смысле, что система, захватывая потоки обмена, вообще говоря, некоторым образом структурированные в пространственно--временном отношении, трансформирует, организует их, навязывает им свою собственную пространственно--временную структуру. Захват, трансформация, организация потоков обмена есть способ организации самой системой своей структуры, т.е. самоорганизация.

Обсудим вопрос о соответствии реакции Белоусова---Жаботинского данному выше определению класса систем, изучаемых синергетикой. Как мы указали, концентрации веществ, участвующих в этой реакции, разделяются на быстрые и медленные. Определим в качестве составляющих самоорганизующейся системы вещества с быстрыми концентрациями. Тогда вещества с медленными концентрациями будут играть роль внешней среды, задающей в каждой точке самоорганизующейся системы положительные (в систему) и отрицательные (из системы) потоки обмена. Отметим, что при этом мы, во--первых, различаем физико-химическую систему --- смесь реагентов и самоорганизующуюся систему и, во--вторых, система и внешняя среда оказываются пространственно неограниченными. Процессы самоорганизации в изолированных системах могут, таким образом, быть рассмотрены в рамках общего представления об "открытых системах потокового типа".

Исследование вопроса о взаимосвязи системы и внешней среды на методологическом системном уровне выявляет частное противоречие, существующее на предметном уровне описания. Известно, что пространственно упорядоченные стационарные структуры возникают не только в неравновесных, но и в равновесных физико-химических системах (образование кристаллов, явление сверхпроводимости и т.п.). Механизмом возникновения неравновесных и равновесных пространственных структур являются соответственно неравновесные и равновесные фазовые переходы. Эти переходы на макро уровне (см. ниже) с формальной математической точки зрения описываются единым образом с помощью обобщенного уравнения Гинзбурга---Ландау [37]. С точки зрения взаимосвязи системы и внешней среды природа неравновесных и равновесных структур, однако, совершенно различна. Неравновесные стационарные структуры, как уже обсуждалось, являются следствием сбалансированности потоков обмена со средой и процессов внутри системы, наличие потоков обмена --- необходимое условие их существования. Равновесные же структуры образуются в замкнутых (квазизамкнутых) системах, взаимодействием которых со средой (вообще говоря, неравновесной) можно пренебречь. В равновесной системе каждый прямой процесс сбалансирован, скомпенсирован обратным ему процессом, следствием чего и является стационарность равновесных структур. Явления возникновения и превращения различных по природе структур, вообще говоря, также должны иметь различную природу. Возникает вопрос: следствием чего является идентичность описания этих явлений в рамках обобщенного уравнения Гинзбурга---Ландау? Здесь мы можем вспомнить суть математического структурного подхода, сформулированного Н.Бурбаки: "Структуры являются орудиями математика: каждый раз, когда он замечает, что между элементами, изучаемыми им, имеют место отношения, удовлетворяющие аксиомам структуры определенного типа, он сразу может воспользоваться всем арсеналом общих теорем, относящихся к структурам этого типа"[6].Видимо, с такой точки зрения структуры равновесные и неравновесные представляются неразличимыми. Однако очевидно, что при идентичном описании различных по природе явлений фундаментальные существенные черты этих явлений остаются неучтенными.

Сделанным замечанием мы завершаем обсуждение проблемы взаимосвязи системы и внешней среды в синергетике и переходим к рассмотрению целостной природы явлений пространственно--временной самоорганизации.

СИНЕРГЕТИКА И ПРИНЦИП ЦЕЛОСТНОСТИ

Обсудим вопрос о природе пространственно--временной самоорганизации и способах ее описания в свете первого принципа системного мышления --- принципа целостности [5; 28].

"Целостность объекта как системы означает принципиальную несводимость его свойств к сумме свойств составляющих его элементов и не выводимость из последних свойств целого" [28]. Таким образом, использование принципа целостности предполагает наличие выделенных элементов (частей) объекта как системы.

"Давняя историко--философская традиция свидетельствует о том, что допустимо два полярных способа разбиения целостной системы на части: при одном из них получаемые в итоге элементы, или части, не несут на себе, так сказать, целостных свойств исходной системы, при другом --- действительно выделяются части целостной системы, т.е. такие элементарные образования, которые сохраняют в специфической форме свойства исследуемой системы. Будем условно называть второй способ декомпозиции системы "целостным" разбиением ее на части" [28].

Явления пространственно--временной самоорганизации, с нашей точки зрения, имеют целостную природу. Поэтому их изучение требует целостного подхода, как в части исходных содержательных представлений, так и формальных методов описания. Используемые сегодня для этой цели предметные представления и методы соответствуют нецелостному способу разбиения системы: элементы объектов как систем в рамках этих предметных представлений не являются элементами целого. Ставя задачу определения указанной природы пространственно--временной самоорганизации, мы не можем их использовать и снова сталкиваемся с парадоксом классической «системной" структуры, на этот раз --- парадоксом целостности [28]: "Решение задачи описания данной системы как некоторой целостности возможно лишь при наличии решения задачи "целостного» разбиения данной системы на части, а решение задачи "целостного» разбиения данной системы на части, возможно, лишь при наличии решения задачи описания данной системы как некоторой целостности". Чтобы обойти этот парадокс, воспользуемся понятием части пространства. Как указывается ниже, способность теоретического субъекта к пространственному соотнесению объектов может служить целостнообразующим фактором. Мы воспользуемся также категорией процесса. Как указывается в [33; 40], объект задается процессом; для получения целостности необходимо задать объект как определенный процесс. Отметим, что процесс, будучи понятием динамическим, имеющим временную природу, для своего целостного описания требует выделения специфических целостных элементов процесса [34] --- "процесс изменения как предм. теор. иссл." Теперь можно сформулировать определение: пространственно--временная самоорганизация является целостной в том смысле, что в ней проявляется согласованное с потоками обмена с внешней средой взаимодействие элементов процессов, протекающих в различных частях системы.

Перейдем к рассмотрению существующей трактовки целостности пространственно--временной самоорганизации на предметном уровне описания. Предметные представления физики, химии, биофизики, экологии и т.п., синтезируемые синергетикой, имеют в качестве общей основны представление о системе взаимодействующих элементов. Роль элемента может играть атом, молекула, клетка, живой организм и т.п. В взаимодействие элементов может заключаться, например, в упругом столкновении молекул, приводящем к изменению их скоростей, актехимической реакции, в ходе которого одни молекулы превращаются в другие, передвижении живых клеток по градиенту вещества, которое сами эти клетки выделяют и т.д. В дальнейшем для определенности мы будем говорить о химическом взаимодействии.

При протекании явлений пространственно--временной самоорганизации элементы начинают взаимодействовать согласованно в пространстве--времени, т.е. наблюдается эффект кооперации. Например, пространственно однородные автоколебания цвета реакционной смеси входе реакции Белоусова---Жаботинского означают, что в каждой точке реакционной смеси количество актов химического взаимодействия периодически меняется во времени и эти изменения пространственно согласованы, синхронизированы. Над элементную природу пространственно--временной самоорганизации отмечает И.Пригожин:"...во всех этих случаях общим является макроскопическое, надмолекулярное... проявление цепи событий, зарождающихся на уровне отдельных молекул" [21].

Как указывают Б.Б.Кадомцев и Ю.А.Данилов, предложенный Г.Хакеном термин "синергетика", происходящий от греческого synergia--- содействие, сотрудничество, акцентирует внимание на согласованности взаимодействия частей при образовании структуры как единого целого [8]. Сам Г.Хакен дает такое определение: "Синергетика занимается изучением систем, состоящих из многих подсистем различной природы... мы хотим рассмотреть, каким образом взаимодействие таких подсистем приводит к возникновению пространственных, временных или пространственно--временных структур в макроскопических масштабах" [38]. Момент целостности применительно к синергетике фиксируют С.П.Курдюмов и Г.Г.Малинецкий: "Синергетика, как правило, имеет дело с процессами, где целое обладает свойствами, которых нет ни у одной из частей" [16]. Использованное выше понятие макроскопического является родственным понятию целостности в том смысле, что в контексте цитат оно фиксирует наличие у ансамбля частиц (атомов, молекул) свойств, отсутствующих у отдельной частицы и требующих адекватного этим агрегированным свойствам изменения способа описания системы. Если в философии проблема целостности восходит еще к Платону и Аристотелю [4], то в естественных наука хона до последнего времени была поставлена и предметно осознана, лишь в биологии в связи с осознанием границ редакционистского подхода. Что касается физики, химии и смежных наук, а также математики с ее теоретико-множественным основанием, то здесь до недавнего времени понятие целостности практически не использовалось. Приведенные цитаты показывают, что в рамках синергетики происходит осмысление специалистами естественных наук целостного характера исследуемых ими явлений. Отметим, что такое же осмысление происходит, в частности, ив квантовой механике в связи с проблемой не силового взаимодействия тождественных частиц [39].



Загрузить файл

Похожие страницы:

  1. Синергетика как парадигма социального мышления

    Реферат >> Социология
    ... узнавание идентичности сценариев хаотизации и порядка в различных отраслях знания. Ибо ускорение социокультурных ... ‚"субъективный" бессмысленны с точки зрения синергетики, синергетический взгляд - это взгляд изнутри, из процесса. По ...
  2. Синергетика и философия

    Реферат >> Философия
    ... хаоса. «Синергетика рассматривает иерархии нестабильности различных порядков и их последовательности. В этом контексте синергетика с помощью ... философии также высказывается весьма противоречивые взгляды - от безоговорочного признания истинности ее ...
  3. Синергетика - наука 21 века

    Реферат >> Философия
    ... синергетики Синергетический подход в естествознании Специфика синергетики 3.1. Отсутствие стандарта терминов 3.2. Междисциплинарность синергетики 3.3. Взгляд ... Назаретяна и др. Приложения синергетики распределились между различными направлениями: - теория ...
  4. Синергетика – теория самоорганизации (2)

    Курсовая работа >> Социология
    ... теории, изложение основных взглядов синергетиков, а также рассмотрение путей формирования синергетики как науки. Основная ... , что между поведением совершенно различных систем, изучаемых различными науками, существуют поистине удивительные ...
  5. Синергетика (3)

    Реферат >> Философия
    ... теорией развивающихся систем. Законы развития различных систем (Вселенной, биосферы, ... «нелинейная термодинамика» и «синергетика». На наш взгляд, последнее наиболее удачно, поскольку ... позволяет определить области применимости различных подходов и тем ...

Хочу больше похожих работ...

Generated in 0.0072381496429443