Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

Философия->Доклад
Самобытная русская философия в своих новаторских исканиях теснейшим образом была связана с религиозным мировоззрением, за которым стояли века духовног...полностью>>
Философия->Доклад
Философская теория всеединства восходит к античности, к таким изречениям древнегреческих философов V-VI вв. до н.э., как: «И из всего одно, и из одног...полностью>>
Философия->Доклад
Экзистенциали́зм, философия существования — направление в философии XX века, рассматривающее человека как уникальное духовное существо, способное к вы...полностью>>
Философия->Доклад
Одни из первых представлений о структуре сознания принадлежат З. Фрейду. Его иерархическая структура: подсознание, сознание, сверхсознание,— видимо, у...полностью>>

Главная > Книга >Философия

Сохрани ссылку в одной из сетей:

Так же как и размерность, симметрия существенно зависит от того, какие операции разрешается производить над объектом. Например, строение тела человека и животных обладает билатеральной симметрией, но операция перестановки правого и левого физически не осуществима. Следовательно, если ограничиться только физически выполнимыми операциями, то билатеральной симметрии не будет. Симметрия - свойство негрубое: небольшая вариация объекта, как правило, уничтожает весь запас присущей ему симметрии.

Если определение симметрии выбрано, то оно позволяет установить между изучаемыми объектами отношение эквивалентности. Все объекты подразделяются на непересекающиеся классы. Все объекты, принадлежащие одному и тому же классу, могут быть переведены друг в друга надлежаще выбранной операцией симметрии, в то время как объекты, принадлежащие различным классам, ни одной операцией симметрии друг в друга переведены быть не могут.

Симметрию следует искать не только в физическом пространстве, где разыгрывается процесс структурообразования, но и в любых пространствах, содержащих "портрет" системы.

В работе [26] предпринята попытка сформулировать требования симметрии, которым должна удовлетворять биологическая система. По мысли автора, "существо дела здесь состоит в эволюционном приспособлении биологических систем организмов к физическим и геометрическим характеристикам внешнего мира, в котором они себя "проявляют".

Биомеханика движений скелета, "константности" психологии восприятия, биохимические универсалии жизненных процессов, движения и потоки, связанные с морфогенезом,- все это реакции отдельных видов организмов на соответствующие инвариантности, свойственные геометрико-физико-химическим характеристикам внешней среды, которые организмы "сумели" идентифицировать и включить в свою филогению в процессе эволюции. Чем больше инвариантных, регулярных свойств своего внешнего мира смог распознать и "учесть" организм, тем больше хаоса удается ему устранить из внешней среды, что в койне концов обеспечивает его преимущества с точки зрения принятия решений, уменьшения фрустрации, доминирования и, по существу, выживания" [26, с. 183]. Классифицировать структуры можно и по степени их сложности. Однако и в этом направлении предприняты лишь первые шаги.

Аксиоматический подход.

Сложность поведения даже простых моделей (термин "элементарных" применительно к этим моделям так же, как и в случае элементарных частиц, отражает скорее уровень наших знаний о них, чем их истинную сложность) навела исследователей на мысль обратиться к аксиоматическому методу с тем, чтобы, следуя Гильберту, отделить существенные особенности модели от несущественных, случайных и тем самым облегчить построение моделей, воспроизводящих нужный режим поведения.

С. Улам [27] и другие авторы рассмотрели отображения плоскости на себя, производимые по определенным правилам (аксиомам). Наиболее эффектным оказалось отображение, предложенное Копуэем [28, 29],- его знаменитая игра "Жизнь".

Играют на плоскости, разбитой на квадратные клетки одного и того же размера. Каждая клетка может находиться в одном из двух состояний: либо быть занятой (например, фишкой), либо пустой. Начальное состояние (начальная расстановка фишек) может быть выбрана произвольно. Последующие состояния клеток зависят от занятости соседних клеток на предыдущем ходу. Соседними считаются восемь клеток, непосредственно примыкающих к данной (имеющих с ней либо общую сторону - примыкание справа, слева, сверху и снизу, либо общую вершину - примыкание по диагонали). Игра состоит из дискретной последовательности ходов. На каждом ходу ко всем клеткам доски применяются следующие три правила (аксиомы).

I. Выживание. Клетка остается занятой на следующем ходу, если на предыдущем были заняты две, или три соседние с ней клетки.

2. Гибель. Клетка становится свободной на следующем ходу, если на предыдущем было занято более трех или менее двух соседних клеток (в первом случае клетка "погибает" из-за перенаселения, во втором - из- за чрезмерной изоляции).

3. Рождение. Свободная клетка становится занятой на следующем ходу, если на предыдущем были заняты три и только три соседние клетки.

Кажущаяся простота правил Конуэя обманчива: как и простые динамические системы, доска с расставленными на ней фишками может перейти в весьма сложные режимы, имитирующие процессы гибели (полное уничтожение всех расставленных в начальной позиции фишек), неограниченный рост, устойчивое стационарное состояние (система с определенной периодичностью в пространстве), периодические по времени осцилляции.

Подробный обзор современного состояния кибернетического моделирования биологии развития приведен в [301].

Поиски универсальной модели.

Сложность поведения простых моделей и неисчерпаемое разнообразие моделируемых объектов наводят на мысль о поиске некоего универсального класса моделей, которые могли бы воспроизводить требуемый тип поведения любой системы.

Рассмотрим, например, систему уравнений химической кинетики, описывающую редкую ситуацию: досконально известный механизм m-стадийной реакции (m - число элементарных актов), в которой принимает участие п веществ. Алгоритм выписывания динамической системы по схеме реакции однозначно определен [31]. В таких системах "химического типа" удалось установить существование довольно сложных режимов (например, каталитический триггер или каталитический осциллятор). В то же время известно, что далеко не всякую динамическую систему с полиномиальной правой частью можно интерпретировать как описывающую некую гипотетическую химическую реакцию: некоторые концентрации в случае произвольно заданной системы могут становиться отрицательными.

Возникает вопрос: всякую ли динамическую систему с полиномиальной правой частью можно промоделировать системой типа химической кинетики? Ответ (положительный) был получен М. Д. Корзухиным [18], доказавшим теорему об асимптотической воспроизводимости любого режима, осуществимого в системах с полиномиальной правой частью, системами типа химической кинетики (быть может, с большим числом "резервуарных" переменных, концентрации которых в ходе реакции считаются неизменными).

Вместо заключения. Мы умышленно не остановились в лекции ни на "универмаге моделей", ни на перечислении существующих методов решения уравнений и задач определенных типов, считая, что и то и другое слушатели сумеют почерпнуть из других лекций. Свою задачу мы видели в том, чтобы, не впадая в излишний педантизм, очертить контуры возникающего нового направления, обратить внимание на основные идеи и понятия.

Свою лекцию мы бы хотели закончить словами Л. И. Мандельштама: "В сложной области нелинейных колебаний еще в большей мере, чем это уже имеет место сейчас, выкристаллизуются свои специфические общие понятия, положения и методы, которые войдут в обиход физика, сделаются привычными и наглядными, позволят ему разбираться в сложной совокупности явлений и дадут мощное эвристическое оружие для новых исследований.

Физик, интересующийся современными проблемами колебаний, должен, по моему мнению, уже теперь участвовать в продвижении по этому пути. Он должен овладеть уже существующими математическими методами и приемами, лежащими в основе этих проблем, и научиться их применять" [32].

ЛИТЕРАТУРА

1. Манделъштам Л. И. Лекции по колебаниям. М.: Изд-во АН СССР, 1955. 503 с.

2. Хакен Г. Синергетика. М.: Мир, 1980. Wi с.

3. Synergetics. А Workshop / Ed. by И. Hakell. 3rd ел. В. etc,, 1977. 277р.

4. Synergetics far from equilibrium/Ed. by A. Pacault, С. Vidal. В. etc,, 1978.

5. structural stability in physics/ Ed. by W. Guttinger, H.Eikenmeier. В. etс., 1978.

6. Pattern formation by dynamic systems and pattern recognition / Ed. bv H. Haken B.etc. 1979. 305p.

7. Dynamic of synergetic systems/ Ed. by H. Haken. В. etc., 1980. 271 p.

8. Choaos and order in nature /Ed. by H.Haken. B. etc. 1980. 271 p.

9. Словарь no кибернетике. Киев: Гл. ред. Укр. сов. энцикл., 1979. 621 с.

10. Улам С. Нерешенные математические задачи. М.: Наука, 1964. 161с.

11. Nonlinear partial differential equations. N. Y.: Acad. press, 1967, p. 223.

12. Николае Г., Пригожин И. Самоорганизация в неравновесных системах. М.: Мир, 1979. 512 с.

13. Гленсдорф П., Пригожин И. Термодинамическая теория структуры, устойчивости и флуктуаций. М.: Мир, 1973. 280 с.

14. Гапонов-Грехов А. В., Рабинович М. И. Л. И. Мандельштам и современная теория нелинейных колебаний и волн.- УФН, 1979, 128, № 4, с. 579-624.

15. Васильев В.А., Романовской Ю. М., Яхт В. Г. Автоволновые процессы в распределенных кинетических системах.- УФН, 1979, 128, № 4, с. 625-666.

16. Академик Л. И. Мандельштам: К 100-летию со дня рождения.- М.: Наука, 1979, с. 107.

17. Бурбаки Н. Архитектура математики.- В кн.: Математическое просвещение. М.: Физ-матгиз, 1959, вып. 5, с. 106-107.

18. Жаботинский А. М. Концентрационные автоколебания. М.: Наука, 1974. 178 с.

19. Баренблатт Г. И. Подобие, автомодельность и промездуточная асимптотика. Л.: Гидрометеоиздат, 1978. 207 с.

20. Эбелинг В. Образование структур при необратимых процессах. М.: Мир, 1979, с. 13-14.

21. Романовский Ю. М., Степанова Н. В., Чернавский Ц. С. Математическое моделирование в биологии. М.: Наука, 1975. 343 с.

22. Turing А. М. The chemical basis of morphogenesis- Phil. Trans. Roy. Soc. London В, 1952, 237, p. 37-72.

23. Нейман Дж. фон. Теория самовоспроизводящихся автоматов. М.: Мир, 1971. 382 с.

24. Рабинович М. И. Стохастические автоколебания и турбулентность.- УФК, 1978, 125, №1, с. 123-168.

25. Mandelbrot В. В. Fractals. San Francisco: W. Н. Freeman and Co. , 1977. 365 p.

26. Хоффман У. Система аксиом математической биологии.- В кн.: Кибернетический сборник. М.: Мир, 1975, вып. 12, с. 184-207.

27. Математические проблемы в биологии: Сб. статей. М.: Мир, 1962, с. 258.

28. Гарднер М. Математические досуги. М.: Мир, 1972, с. 458.

29. Эйген М., Винклер Р. Игра жизнь. М.: Наука, 1979, с. 53.

30. Аладъев В. 3. Кибернетическое моделирование биологии развития.- В кн.: Параллельная обработка информации и параллельные алгоритмы. Таллин: Валгус, 1981, с.211-280.

31. Вольперт А. .0., Худяев С. И. Анализ в классе разрывных функций и уравнения математической физики. М.: Наука, 1975. 394 с.

32. Андронов А. А., Витт А. А., Хайкин С. Э. Теория колебаний: Предисловие к первому изданию. М.: Физматгиз, 1959, с. 11-12.

СИНЕРГЕТИКА И ПРОБЛЕМЫ УПРАВЛЕНИЯ В ТЕХНИКЕ,

ЭКОНОМИКЕ И СОЦИОЛОГИИ

Гуманитарная страница Анатолия Пинского

Научный коллектив кафедры систем автоматического управления ТРТУ под руководством профессора А.А.Колесникова проводит исследования в области синергетических систем управления. Развит принципиально новый подход к синтезу систем управления нелинейными многосвязными объектами, основанный на концепции введения притягивающих (инвариантных) многообразий-аттракторов.

На основе синергетического подхода осуществлен прорыв в трудной проблеме синтеза систем управления широким классом нелинейных многомерных объектов, что позволило впервые разработать общую теорию и методы аналитического конструирования систем скалярного, векторного, разрывного, селективно-инвариантного, многокритериального и терминального управлений нелинейными динамическими объектами различной физической природы, в том числе и с учетом ограничений на координаты и управления.



Загрузить файл

Похожие страницы:

  1. Синергетика как парадигма социального мышления

    Реферат >> Социология
    ... узнавание идентичности сценариев хаотизации и порядка в различных отраслях знания. Ибо ускорение социокультурных ... ‚"субъективный" бессмысленны с точки зрения синергетики, синергетический взгляд - это взгляд изнутри, из процесса. По ...
  2. Синергетика и философия

    Реферат >> Философия
    ... хаоса. «Синергетика рассматривает иерархии нестабильности различных порядков и их последовательности. В этом контексте синергетика с помощью ... философии также высказывается весьма противоречивые взгляды - от безоговорочного признания истинности ее ...
  3. Синергетика - наука 21 века

    Реферат >> Философия
    ... синергетики Синергетический подход в естествознании Специфика синергетики 3.1. Отсутствие стандарта терминов 3.2. Междисциплинарность синергетики 3.3. Взгляд ... Назаретяна и др. Приложения синергетики распределились между различными направлениями: - теория ...
  4. Синергетика – теория самоорганизации (2)

    Курсовая работа >> Социология
    ... теории, изложение основных взглядов синергетиков, а также рассмотрение путей формирования синергетики как науки. Основная ... , что между поведением совершенно различных систем, изучаемых различными науками, существуют поистине удивительные ...
  5. Синергетика (3)

    Реферат >> Философия
    ... теорией развивающихся систем. Законы развития различных систем (Вселенной, биосферы, ... «нелинейная термодинамика» и «синергетика». На наш взгляд, последнее наиболее удачно, поскольку ... позволяет определить области применимости различных подходов и тем ...

Хочу больше похожих работ...

Generated in 0.0067780017852783