Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

Химия->Реферат
Наряду с загрязнением окружающей среды (атмосфера, вода, почва) следует выделить один из самых важных факторов, влияющих на состояние здоровья человек...полностью>>
Химия->Лабораторная работа
OH- = Cu+(OH)-2↓ Вывод: при взаимодействии FeCl3 с NaOH, CuSO4 с NaOH наблюдали образование осадков: Fe3+(OH)3↓ бурого цвета, Cu+(OH)-2↓ - бирюзового ...полностью>>
Химия->Курсовая работа
Используя метод Темкина-Шварцмана рассчитать при температуре = 1200, =1500 Построив зависимость графически определить температуру, при которой процесс...полностью>>
Химия->Задача
ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА рассматривает взаимосвязи между работой и энергией применительно к химическим превращениям Определяет, в первую очередь, усло...полностью>>

Главная > Реферат >Химия

Сохрани ссылку в одной из сетей:

На правах рукописи

ШИШОВА

Марина Александровна

ЭЛЕКТРОДНЫЕ ПРОЦЕССЫ В РАЗБАВЛЕННЫХ

ХРОМСОДЕРЖАЩИХ РАСТВОРАХ И ПУТИ ПОВЫШЕНИЯ

ЭФФЕКТИВНОСТИ ЭЛЕКТРОХИМИЧЕСКОЙ ОЧИСТКИ

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата технических наук

2005

Общая характеристика работы

Актуальность проблемы.

Гальваническое производство является одним из самых водопотребляемых. Его сточные и промывные воды содержат ценные и токсичные соединения тяжелых металлов: Сr (VI), Ш, Си и др. Уменьшение расхода воды, извлечение из нее ценных материалов, снижение токсичности являются важнейшими задачами, направленными на повышение экономичности и экологичности производства. При решении данных задач большое внимание уделяется выбору эффективного способа удаления загрязняющих компонентов из промывной и сточной воды. Выбор способа очистки зависит от состава и режима поступления промывных и сточных вод, концентрации загрязнений, возможности повторного использования очищенной воды. Среди различных способов очистки загрязненных вод освоение и внедрение электрохимических технологий является в настоящее время прогрессивным направлением, позволяющим не только очистить воду и вернуть ее в технологический цикл, но и утилизировать твердые отходы. Качество очистки зависит от выбора электродных пар и режима электролиза. При этом основное внимание уделяется материалу катода и процессам, протекающим на нем. Влияние материала анода и скорости анодных процессов на степень удаления загрязняющих компонентов не было принято во внимание при оптимизации технологических параметров электрохимической очистки. Поэтому комплексное изучение катодных и анодных процессов является актуальным в научном и в прикладном планах.

Диссертация выполнена в рамках плановых научных исследований кафедры "Технология электрохимических производств" в соответствии с планом важнейших НИР СГТУ по основному научному направлению "Разработка теоретических основ электрохимических технологий и материалов для химических источников тока" (№ государственной регистрации 01200205598).

Цель работы состояла в обосновании выбора материала анода, катода и соответствующих им технологических параметров электрохимического способа очистки хромсодержащих промывных вод, обеспечивающих оптимизацию процесса.

Для достижения поставленной цели необходимо было решить следующие задачи:

изучить кинетику анодного поведения металлов и графитовых материалов в слабокислых окислительных средах, выявить области потенциалов (и соответствующие им плотности тока поляризации), обеспечивающие работу электродных материалов как нерастворимых анодов;

установить оптимальные технологические параметры анодного растворения железного электрода применительно к электрокоагуляционной очистке;

изучить катодное восстановление Сr (VI) из разбавленных растворов на графитовых и металлических электродах;

разработать технологические рекомендации для электрохимического способа очистки хромсодержащих промывных вод с нерастворимыми анодами, обеспечивающего требования по ПДК (Сг (VI)) в очищенной воде.

Научная новизна работы.

Впервые показано значение адсорбционных процессов на границе раздела электрод (металлический, графитовый) - разбавленный хромсодержащий электролит, моделирующий сточные и промывные воды гальванических производств для обоснования выбора электродных материалов. Установлено, что пленка, пассивирующая поверхности, как катода, так и анода, содержит в своем составе соединения хрома, оксидные формы металлов. Рассчитаны величины адсорбции реагентов и образующихся продуктов реакции в процессе электровосстановления и электроокисления на различных электродных материалах в разбавленных хромсодержащих электролитах. Показано, что кислород, выделяющийся на аноде, влияет на скорость катодных реакций и соответственно на качество электрохимической очистки.

Практическая значимость результатов работы. Разработаны технологические рекомендации по оптимальному режиму использования стальных электродов в электрокоагуляционной очистке хромсодержащих промывных и сточных вод гальванических производств. Предложены электродные материалы и технологические параметры (плотность тока, расстояние между электродами, температура раствора) для электрохимического удаления Сг (VI) из промывных вод путем электролиза с нерастворимыми анодами. Результаты работы апробированы на ОАО "Электроисточник", г. Саратов.

Апробация результатов работы. Основные результаты диссертационной работы доложены на III Всероссийской конференции молодых ученых (Саратов, 2001г), Международной конференции "Композит-2001" (Саратов, 2001 г), Всероссийской конференции СЭХТ-2002 (Саратов, 2002 г), Всероссийской научно-практической конференции (Пенза, 2004 г), III Международной научно-технической конференции "Экология 2004 - море и человек" (Таганрог, 2004 г).

Публикации. По теме диссертации опубликовано 8 работ, из них 2 статьи в центральной печати, 5 в реферируемых сборниках научных трудов и 1 депонирована в ВИНИТИ.

Структура и объем работы. Диссертация состоит из введения, 5 глав, выводов, списка используемой литературы из 196 наименований и приложений.

На защиту выносятся следующие основные положения:

1. Кинетические закономерности поведения анодных и катодных материалов в разбавленных хромсодержащих модельных электролитах.

2. Обоснование выбора электродных материалов, используемых в электрохимической очистке в хромсодержащих промывных водах.

3. Разработка технологических параметров процесса электрохимической очистки с растворимыми и нерастворимыми анодами в разбавленных хромсодержащих растворах.

Основное содержание работы

Во введении дано обоснование актуальности темы, рассмотрены цель и задачи исследования, научная новизна и практическая значимость работы.

Глава 1. Литературный обзор

Проанализированы литературные данные по кинетике и механизму анодного растворения металлов в различных средах. Рассмотрены механизмы образования пассивных пленок на электродных материалах и их влияние на скорость анодного процесса. Установлено, что, несмотря на большой интерес к проблеме анодного растворения металлов, данные по анодному поведению материалов в разбавленных слабокислых окислительных растворах отсутствуют. Исходя из актуальности проблемы повышения экологичности и экономичности производства дана сравнительная характеристика различных способов удаления ионов Сг (VI) из промывных и сточных вод. Показана перспективность использования электрохимических способов. Сделан вывод о целесообразности изучения анодных процессов в разбавленных хромсодержащих электролитах, с целью повышения качества электрохимической очистки загрязненных вод.

Глава 2. Методика эксперимента.

Объектами исследования явились электроды из стали (08кп), алюминиевого сплава АМ-6, титана (В), свинца (СО), графитовой фольги "Графлекс" ТУ 5728-00117172478-97 и спектрального графита, модельные электролиты, содержащие 3,4Т и промывные воды гальванических производств ОАО "Электроисточник", г. Саратов, завода им. Урицкого, г. Энгельс. Растворы готовились на основе дистиллированной воды и реактивов марки "х. ч. ". Электрохимические исследования проводили на потенциостате П-5848 с помощью методов вольтамперометрии, хроноамперометрии, хронопотенциометрии. Потенциалы регистрировали относительно 1н хлорсеребряного электрода сравнения. рН модельных хромсодержащих растворов определяли с помощью милливольтметра рН-150М Измерение рН приэлекгродного слоя (pH) проводилось с помощью микросурьмяного электрода (МСЭ). Состав пассивной пленки, полученной в процессе электролиза на различных электродных материалах, определяли методом вторично-ионной масс-спектрометрии (ВИМС). Состояние поверхности оценивалось с помощью микроскопа CAPS ZELSS JENA (IP-20) при увеличении в 500 раз. Воспроизводимость полученных экспериментальных результатов оценивалась с помощью критерия Кохрена. Электролиз в разбавленных хромсодержащих электролитах проводился при использовании в качестве катода - графитового материала, стали 08кп, в качестве растворимого анода - стали (08), нерастворимого анода - свинца, титана, графитовых материалов, при плотности тока iK=iA=2 А/дм2, температуре процесса (20±5) °С, расстояния между электродами не более 5 см. Объем электролита на единицу поверхности составил 0,4 л/дм2.

Глава 3. Результаты эксперимента анодное поведение электродных материалов в разбавленных электролитах, содержащих сг (vi).

3.1 Потенциометрическое исследование поведения электродных материалов в разбавленных водных растворах к2сг207.

Потенциал, возникающий на электроде в момент его погружения в исследуемый хромсодержащий электролит, зависит от концентрации Сг (VI) и материала электрода. В наиболее концентрированном растворе бихромата калия (3,4'10"3М) на металлических электродах в первую секунду устанавливается отрицательный потенциал: на Fe - (-0,3В), на РЬ - (-0,51В), на Ti - (-0,28 В). С разбавлением электролита потенциал электродов меняется различно. Так, на свинцовом электроде потенциал погружения становится более положительным (в 0,017-10"3М ЕР = - 0,377 В), на титановом электроде - смещается в сторону более отрицательных значений (в 0, О17КГМ Ел = - 0,545 В). Изменение потенциала погружения с разбавлением раствора может быть следствием протекания нескольких процессов: уменьшения адсорбции СГ2О72", увеличения взаимодействия молекул воды с поверхностью электрода и снижения подтравливания электрода, т.к рН растворов с разбавлением электролита возрастает с 4,73 (3,4-10"3М) до 6,16 (0,017-10%). Следует учитывать, что адсорбция ионов на отрицательно заряженных в водных растворах поверхностях металлов происходит путем ориентации положительно заряженного иона Сг6+ к поверхности электрода. При этом усиливается отрицательный заряд. В этом также может состоять причина более отрицательного электродного потенциала на изучаемых металлических электродах в более концентрированных растворах.

Стационарное значение потенциала на исследуемых электродных материалах вследствие конкурирующей адсорбции бихроматионов, молекул воды и воздействия рН среды устанавливается в течение 1,5-5 минут (рис.1). Наиболее быстро этот процесс протекает на углеродных материалах, что может быть связано с высокоразвитой поверхностью материала, обладающей хорошими адсорбционными свойствами. При этом кислородсодержащий анион хрома ориентирован таким образом, что катион хрома обращен в сторону раствора. Подтверждением адсорбционных процессов на границе графитовый электрод-электролит является то, что в присутствии К2Сr207 электрод приобретает более положительное значение потенциала, по сравнению с водой, имеющей рН, равный рН модельного электролита К2Сг207-

Изменение стационарного потенциала от логарифма концентрации (lgC) (для изучаемого диапазона концентраций К2Сг207) подчиняется линейному закону: E=A+BlgC к2Сг2о7, где константы А и В определяются материалом электрода. Так, для титанового электрода А = 0,04В, В = 0,11В; для электрода, выполненного из фольги "Графлекс", А = 0,62В, В = 0,07В.

3.2 Потенциодинамическое (ПД) исследование анодного поведения исследуемых электродов в разбавленных растворах бихромата калия.

От потенциала начала поляризации (-0,5 В отн. х. сэ. с) вплоть до потенциалов интенсивного выделения кислорода скорости анодных процессов невелики (рис.2 - 4). Поведение металлических электродов индивидуально: зависит от скорости развертки потенциала, концентрации электролита, температуры раствора. При малых значениях анодного потенциала молекулы воды взаимодействуют с поверхностью металла аналогично гидратации и стимулируют растворение металла. Некоторая часть молекул воды диссоциирует в ходе адсорбции, и ионы кислорода, порвав связь с протонами, прочно блокируют самые активные центры поверхности. Тормозящее действие на растворение металла оказывают и кислородсодержащие ионы хрома, способные адсорбироваться на поверхности электрода Пленка, пассивирующая поверхность электродного материала, может являться продуктом нескольких процессов, протекающих на поверхности. Так, на стальном электроде, по мере смещения потенциала в область положительных значений, растворение железа протекает с образованием ионов Fe2+, его оксидных и гидроксидных форм (до потенциалов 0,6 Вотн), сопровождается образованием гидратированных ионов Fe: FeOH*2/Fe (OH) 2 (в области потенциалов до 1,1 В) и оксидов Fe042", которые взаимодействуют с анионами Сr (VI) с образованием малорастворимых соединений. Рост анодного тока в области потенциалов более 1,2 В обусловлен не только выделением кислорода, но и растворением металла, происходящим через образованный пассивирующий слой. Пассивирующее влияние кислородсодержащих ионов Сr (VI) уменьшается с разбавлением раствора, соответственно, возрастает плотность тока. Однако, начиная с концентрации 0,34-10"3 М удаление образующихся оксидных соединений железа с поверхности электрода затрудняется за счет уменьшения их растворимости при повышении рН до 5,25 и более.



Загрузить файл

Похожие страницы:

  1. Химические и электрохимические методы очистки сточных вод

    Реферат >> Экология
    ... процессов заключается в следующем: при протекании постоянного электрического тока через хромсодержащие растворы ... 8) Необходимость предварительного разбавления стоков до суммарной ... типы аппаратов с развитой электродной поверхностью, например псевдоожиженного ...
  2. Автоматические системы управления химико-технологическими процессами

    Реферат >> Химия
    ... ,4, валентность – 2, стандартный электродный потенциал – 0,76 В ... сульфата цинка. В разбавленных растворах NaOH цинк анодно пассивируется ... режима и особенности процессов Процесс цинкования Цинк на катоде ... 16000 28,5 57 450,1 хромсодержащий Итого: 98,5 132 1042 ...
  3. Электрохимический синтез низкоплотных углеродных материалов для очистки воды

    Реферат >> Химия
    ... стационарную поляризационную кривую суммарного электродного процесса, можно выделить три ... новый электродный графитового слоя с разбавлением раствора кислоты ... Поиск эффективных способов обезвреживания хромсодержащих стоков гальванических производств/ Е.В. ...
  4. Поиск оптимального содержания пигмента в покрытиях на основе алкидного лака ПФ-060

    Дипломная работа >> Химия
    ... ингибирующей способности замены хромсодержащих и свинецсодержащих пигментов ... растворов и их кристаллизация. Исследования процессов твердения цементного раствора ... Композиции готовили методом разбавления пигментной пасты ... использовали двух электродную ячейку. ...

Хочу больше похожих работ...

Generated in 0.0017900466918945