Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

Экономика->Реферат
Представленная на заседании Госсовета президентская стратегия социально-экономического развития России до 2020 года (далее — Стратегия) по сути, являе...полностью>>
Экономика->Реферат
Считается, что понятие финансовой системы является развитием общего определения - финансы. При этом, как отмечалось ранее, финансы выражают экономичес...полностью>>
Экономика->Реферат
В условиях рыночной экономики компаниям необходимо постоянно обновлять, модернизировать и повышать потребительские свойства собственной продукции, что...полностью>>
Экономика->Контрольная работа
Активизация в современном мире, и прежде всего в Западной Европе, интеграционных процессов является важным фактором для формирования международного ры...полностью>>

Главная > Шпаргалка >Экономика

Сохрани ссылку в одной из сетей:

11. Средние величины в статистике. Виды средних и методика их

расчета

Средней величиной называется обобщающий показа­тель, характеризующий типичный уровень явления в конкретных ус­ловиях места и времени, отражающий величину варьирующего при­знака в расчете на единицу качественно однородной совокупности.

Вычисление среднего — один из распространенных приемов обобщения; средний показатель отражает то общее, что характерно (типично) для всех единиц изучаемой совокупности, в то же время он игнорирует различия отдельных единиц.

Средняя отражает характерный, типичный, реальный уро­вень изучаемых явлений, характеризует эти уровни и их изме­нения во времени и в пространстве.

Средняя - это сводная характеристика закономерностей процесса в тех условиях, в которых он протекает.

Выбор вида средней определяется экономическим содержа­нием определенного показателя и исходных данных. В каждом конкретном случае применяется одна из средних вели­чин: арифметическая, гармоническая, геометрическая, квадратическая, кубическая и т.д.

Перечисленные средние относятся к классу степенных средних и объединяются общей формулой (при различных значениях т):

При m = -1 — средняя гармоническая; при т = 0 — средняя геометрическая хг ; при т = 1 — средняя арифметическая хар ; при т = 2 — средняя квадратическая хквадр; при т = 3 — средняя кубическая хкуб.

При использовании одних и тех же исходных данных, чем больше т в формуле, тем больше значение средней величины:

Это свойство степенных средних возрастать с повышением показателя степени определяющей функции называется в стати­стике правилом мажорантности средних.

12. Средняя арифметическая простая и взвешенная. Условия

применения. Вычисление средней арифметической по данным

интервального ряда



Сред­няя арифметическая применяется в тех случаях, когда объ­ем варьирующего признака для всей совокупности является суммой значений признаков отдельных ее единиц. Для общест­венных явлений характерна аддитивность (суммарность) объе­мов варьирующего признака, этим определяется область при­менения средней арифметической и объясняется ее распро­страненность как обобщающего показателя.

Средняя арифметическая простая равна простой сумме от­дельных значений осредняемого признака, деленной на общее число этих значений (она применяется в тех случаях, когда имеют­ся несгруппированные индивидуальные значения признака):

Средняя из вариантов, которые повторяются различное чис­ло раз, или, как говорят, имеют различный вес, называется взвешенной.

Cредняя гармоническая — сред­няя взвешенная из варьирующих обратных значений признака. Она является преобразованной формой арифметической сред­ней и тождественна ей. Вместо гармонической всегда можно рассчитать среднюю арифметическую, но для этого сначала нужно определить веса отдельных значений признака, скрытые в весах средней гармонической.

13. Средняя гармоническая. Методика расчета, формулы и условия

применения средней гармонической

Cредняя гармоническая — сред­няя взвешенная из варьирующих обратных значений признака. Она является преобразованной формой арифметической сред­ней и тождественна ей. Вместо гармонической всегда можно рассчитать среднюю арифметическую, но для этого сначала нужно определить веса отдельных значений признака, скрытые в весах средней гармонической.

Таким образом, средняя гармоническая применяется тогда, когда неизвестны действительные веса f, а известно w = xf, т.е. в тех случаях, когда средняя предназначается для расчета сумм слагаемых, обратно пропорциональных величине данного признака, когда суммированию подлежат не сами варианты, а обратные им величины.

В тех случаях, когда вес каждого варианта равен единице (индивидуальные значения обратного признака встречаются по одному разу), применяется средняя гармоническая простая, ис­числяемая по формуле:

14. Средние структурные величины, методика их расчета.

Cтруктурные сред­ние применяются для изучения внутреннего строения и структуры рядов распределения значений признака. К таким показателям относятся мода и медиана.

Мода — значение случайной величины, встречающее­ся с наибольшей вероятностью в дискретном вариационном ря­ду — вариант, имеющий наибольшую частоту.

Медиана Ме — это вариант, который находится в середи­не вариационного ряда. Медиана делит ряд на две равные (по числу единиц) части — со значениями признака меньше медиа­ны и со значениями признака больше медианы. Чтобы найти медиану, необходимо отыскать значение признака, которое ра-ходится в середине упорядоченного ряда. В ранжированных ря­дах несгруппированных данных нахождение медианы сводится к отысканию порядкового номера медианы.

15. Вариация и задачи ее статистического изучения. Основные

показатели вариации, их достоинства и значение.



Вариация - колеблемость, многообразие, изменяемость величины признака у отдельных единиц совокупности.

Вариация даёт возможность оценить степень воздействия на данный признак других варьирующих признаков, установить, например, какие факторы и в какой степени влияют на смертность населения, финансовое положение предприятий, урожайность пшени­цы и т. п.

Вариация существует в пространстве и во времени. Под ва­риацией в пространстве понимается колеблемость значений признака по отдельным территориям.

Объективно существует также вариация во времени. Под ней подразумевают изменение значений признака в различные пери­оды (или моменты) времени. Так, со временем изменяются сред­няя продолжительность жизни, срок службы товаров длительно­го пользования, мнения людей и т. д.

Показатели вариации делятся на две группы: абсолютные и относительные. К абсолютным относятся размах вариации, сред­нее линейное отклонение, дисперсия и среднее квадратическое отклонение. Вторая группа показателей вычисляется как отно­шение абсолютных показателей вариации к средней арифмети­ческой (или медиане). Относительными показателями вариации являются коэффициенты осцилляции, вариации, относительное линейное отклонение и др.

Самым простым абсолютным показателем является размах вариации (R).

Размах показывает, насколько велико различие между единица­ми совокупности, имеющими самое маленькое и самое большое значение признака.

Знание подобного рода величин необходимо в практической и хозяйственной деятельности, а также в научных исследованиях.

Например, размах вариации применяется при контроле каче­ства продукции для определения влияния систематически дей­ствующих причин на производственный процесс. Для этого от­бирают через определенные промежутки времени несколько деталей и производят их измерение. Рассчитав по данным этих выборок показатели размаха вариации, на основе сопоставления результатов вычислений судят об устойчивости режима произ­водственного процесса.

В учебной литературе по статистике обычно указывается, что размах имеет существенный недостаток. Его величина всецело зависит от крайних значений признака, и он не учитывает всех изменений варьирующего признака в пределах совокупности.

Этот упрек в адрес размаха вариации является не совсем вер­ным. Какой же это недостаток, когда именно в этом заключается суть показателя.

К недостаткам размаха вариации можно от­нести то обстоятельство, что очень низкое и очень высокое зна­чения признака по сравнению с основной массой его значений в совокупности могут быть обусловлены какими-либо сугубо случайными обстоятельствами (т. е. эти значения являются ано­мальными в совокупности).

Условия существования и развития отдельных еди­ниц совокупности в определенной степени различны, что сказы­вается и на различии значений у них взятого нами признака. Средняя величина отражает эти средние условия.

Среднее линейное отклонение дает обобщен­ную характеристику степени колеблемости признака в совокуп­ности. Однако при его исчислении приходится допускать некор­ректные с точки зрения математики действия, нарушать законы алгебры, что побудило математиков и статистиков искать иной способ оценки вариации для того, чтобы иметь дело только с положительными величинами. Самый простой выход - возвести все отклонения во вторую степень.



Полученная мера вариации называется дисперсией, a корень квадратный из дисперсии - средним квадратическим отклонением. Эти показатели являются общепринятыми мерами вариации и часто используются в статистических иссле­дованиях, а также в технике, биологии и других отраслях зна­ний. Данные показатели нашли также свое широкое применение в международной практике учета и статистического анализа, в частности в системе национального счетоводства.

Дисперсия есть средняя величина квадратов отклонений.

Среднее квадратическое отклонение - это обобщающая харак­теристика размеров вариации признака в совокупности. Оно выражается в тех же единицах измерения, что и признак (в мет­рах, тоннах, рублях, процентах и т. д.).

16. Понятие вариации и ее значение. Статистическое изучение



Загрузить файл

Похожие страницы:

  1. Основные задачи и принципы организации государственной статистики в Российской Федерации

    Реферат >> Социология
    ... принципы организации государственной статистики в Российской Федерации. Введение. Цель данной работы является изучение организации государственной статистики в России. Статистика ... рассматриваются основные принципы организации государственной статистики в ...
  2. Развитие российской государственной статистики (2)

    Реферат >> Маркетинг
    ... , совершенствовании организации государственной статистики. Глава 1. Советский период деятельности органов государственной статистики (1918- ... изложил принципы и направления реформирования российской государственной статистики. Реформирование статистики на ...
  3. Шпаргалка по Статистике (2)

    Шпаргалка >> Маркетинг
    1. Понятие статистики. Предмет и метод статистики 2. Основные задачи и принципы организации государственной статистики РФ. 3. Сущность и ... информации. 2. Основные задачи и принципы организации государственной статистики РФ. Главным учетно-статистическим ...
  4. Принципы организации системы управленческих счетов

    Курсовая работа >> Государство и право
    ... учета и статистики Дисциплина бухгалтерский управленческий учет Курсовая работа на тему: «Принципы организации системы ... акцио­неры, кредиторы, государствен­ные налоговые органы и т.д. Внутренние пользователи: ме­неджеры организации, сотруд­ники, помогающие ...
  5. Принципы организации и формы безналичных расчетов в РФ (3)

    Реферат >> Финансы
    ... хозяйствующими субъектами и органами государственной власти. Движение денег при ... основные принципы организации безналичных расчетов: 1) Все предприятия и организации обязаны ... изд., перераб. и доп.- М.:Финансы и статистика, 2000.-464 с.:ил. Ивасенко А.Г. « ...

Хочу больше похожих работ...

Generated in 0.0018539428710938