Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

Информатика->Задача
Методы продвижения сайтов в сети Интернет направлены на достижение сайтом наиболее высоких позиций в поисковой выдаче. Основа поисковой выдачи - это с...полностью>>
Информатика->Реферат
Глаз адаптируется к средней яркости рассматриваемой сцены, поэтому при смене фона изменяется восприятие сцены. Например, однородно окрашенная область ...полностью>>
Информатика->Реферат
Современный мир не мыслим без Internet. ИНТЕРНЕТ (Internet — inter + net — объединение сетей) — семирная система объединённых компьютерных сетей, пост...полностью>>
Информатика->Реферат
Появление в 2 году Windows Millennium Edition — это во многом улучшенная версия Windows 98, а не новая операционная система. Внешне Windows Millennium...полностью>>

Главная > Курсовая работа >Информатика

Сохрани ссылку в одной из сетей:

2.1.3 Мережа зі зворотнім розповсюдженням

В даній розробці використано мережу зі зворотнім розповсюдженням, чия процедура навчання є найбільш ефективною. Алгоритм розповсюдження сигналів помилки від виходів ШНМ до її входів, в напрямі, зворотньому прямому розповсюдженню сигналів в звичному режимі роботи навчання ШНМ одержав назву процедури зворотнього розповсюдження (рис.2.6):

1. Подати на входи мережі один з можливих образів і в режимі звичного функціонування ШНМ, коли сигнали розповсюджуються від входів до виходів, розрахувати значення останніх.

(2.11)

де M - число нейронів в шарі n-1 з врахуванням нейрона з постійним вихідним станом +1, що задає зсув; yi (n-1) =xij (n) - i-й вхід нейрона j шару n.

2. Розрахувати (N) для вихідного шару по формулі

(2.12)

Розрахувати по формулі зміни ваг w (N) шару N.

3. Розрахувати по формулах відповідно (n) і w (n) для всієї решти шарів, n=N-1,...1.

4. Скоректувати всю вагу в ШНМ за формулою:

(2.10)

5. Якщо помилка мережі істотна, перейти на крок 1. Інакше - кінець.

Рис.2.6 Діаграма сигналів в мережі при навчанні по алгоритму зворотного розповсюдження: А) взаємодія сигналів у внутрішньому шарі, А) взаємодія сигналів у вихідному шарі, С) виправлення ваг

2.1.4 Розпізнавання обличчя

Труднощі, пов'язані з розпізнанням обличчя, можуть бути віднесені до наступних категорій:

Поза. Зображення обличчя змінюються у відповідності до орієнтації пари обличчя-камера, тому деякі лицьові особливості, як наприклад око або ніс, можуть частково або цілком бути за завадами.

Присутність або відсутність структурних компонентів. Лицьові особливості, як наприклад, бороди, вуса, і окуляри можуть бути присутні або ні. Є велика кількість мінливості серед цих компонентів зокрема форма, колір, і розмір.

Вираз обличчя. Форма облич є безпосередньо пов'язаний з виразом обличчя персони.

Завади. Обличчя можуть бути частково приховані іншими об'єктами. У зображенні з групою людей, деякі обличчя можуть частково заховати інші.

Орієнтація зображення. Зображення обличчя безпосередньо видозмінюється у відповідності до обертання оптичної осі фотоапарата.

Умови зображення. Коли зображення сформоване, чинники, як наприклад освітлення (спектри, початкове розповсюдження і інтенсивність) і характеристики фотоапарата (сенсорна відповідь, лінзи) впливають на вираз обличчя.

Хоча розпізнавання обличчя - це високорівнева візуальна проблема, - в нашому методі залучається досить небагато структур. Ми скористаємося частиною цих структур, пропонуючи схему для розпізнавання, яке засноване на підході теорії інформації, прагнучи кодувати найдоречнішу інформацію в групі облич, які краще всього відрізнятимуть їх один від одного. Підхід перетворює зображення обличчя в малий набір характеристичних даних, які є головними компонентами учбового набору зображень облич. Схема функціонує за методом головних компонент, який показав себе як найбільш ефективний серед інших методів.

2.1.5 Метод головних компонент

В даній розробці вибраний метод розпізнавання обличчя, що називається метод головних компонент (Principal Component Analysis, PCA), що стискує простір облич без істотних втрат інформативності. Він полягає в лінійному ортогональному перетворенні вхідного вектора X розмірності N у вихідний вектор Y розмірності M < N. При цьому компоненти вектора Y є некорельованими і загальна дисперсія після перетворення залишається незмінною. Матриця X складається зі всіх зразків зображень навчального набору. Розв’язавши рівняння , одержуємо матрицю ортонормованих власних векторів , де - коваріаційна матриця для X, а - діагональна матриця власних значень. Вибравши з підматрицю , що відповідає найбільшим власним числам, одержимо, що перетворення , де - нормалізований вектор з нульовим математичним очікуванням, характеризує велику частину загальної дисперсії і відображає найістотніші зміни X. Вибір перших M головних компонент розбиває векторний простір на головний (власний простір) , що містить головні компоненти, і його ортогональне доповнення . Застосування цього методу для задачі розпізнавання людини по зображенню обличчя має наступний вигляд (рис.2.7). Вхідні вектори є центрованими і приведеними до єдиного масштабу зображеннями облич. Власні вектори, обчислені для всього набору зображень облич, називаються власними обличчями (eigenfaces) [3].

Рис 2.7 Приклад зображень власних векторів (власних облич)

Для кожного зображення обличчя обчислюються його головні компоненти. Звичайно береться від 5 до 200 головних компонент. Решта компонентів кодує дрібні відмінності між обличчями і шум. Процес розпізнавання полягає в порівнянні головних компонент невідомого зображення з компонентами решти зображень.

Метод головних компонент так само застосовується для виявлення обличчя на зображенні. Для облич значення компонент у власному просторі мають великі значення, а в доповненні власного простору - близькі до нуля. По цьому факту можна знайти, чи є вхідне зображення обличчям. Для цього перевіряється величина помилки реконструкції: чим більше помилка, тим більше ймовірність, що це не обличчя.

При зміні ракурсу зображення, наступає момент, коли цей метод при розпізнаванні починає реагувати більше на ракурс зображення, ніж на міжкласові відмінності. Класи при цьому більше не є кластерами у власному просторі. Це розв'язується додаванням в навчальну вибірку зображень в різних ракурсах. При цьому власні вектори втрачають обличчеподібну форму. При зміні кута повороту голови, головні компоненти викреслюють криві у власному просторі, які однозначно ідентифікують обличчя людини і по яких можна провести розпізнавання. Ці криві були названі власними сигнатурами (eigensignatures). По максимумах власних сигнатур було так само відмічено, що найбільшу інформативність має зображення обличчя в напівпрофіль [4].

Основна перевага застосування аналізу головних компонент - це зберігання і пошук зображень у великих базах даних, реконструкція зображень. Основний недолік - високі вимоги до умов зйомки зображень. Зображення повинні бути одержані в близьких умовах освітленості, однаковому ракурсі і повинна бути проведена якісна попередня обробка, що приводить зображення до стандартних умов (масштаб, поворот, центрування, вирівнювання яскравості, відсікання фону). Небажана наявність таких чинників, як окуляри, зміни в зачісці, виразі обличчя і інших внутрішньокласових варіацій.

2.1.6 Гнучкі контурні моделі обличчя

У даних методах розпізнавання проводиться на основі порівняння контурів обличчя. Контури, звичайно, витягуються для ліній голови, вух, губ, носа, брів і очей (рис.2.7). Контури представлені ключовими позиціями, між якими положення точок, що належать контуру, обчислюється інтерполюванням. Для локалізації контурів в різних методах використовується як апріорна інформація, так і інформація, одержана в результаті аналізу навчального набору.

Ключові точки розміщуються вручну на наборі тренувальних зображень. Потім витягується інформація про інтенсивність пікселів, що лежать на лінії, перпендикулярній контуру для кожної точки контура. При пошуку контурів нового обличчя використовувався метод симуляції відпалу з цільовою функцією з двох складових. Перша із них максимізовувалася при відповідності інтенсивностей пікселів, витягнутих на перпендикулярній контуру лінії аналогічним пікселям з навчальної вибірки. Друга - при збігу контура з формою контурів тренувальних прикладів. Таким чином, витягувався не просто контур, а контур рис обличчя. Як повинен виглядати типовий контур рис обличчя, процедура пошуку знає з тренувальних прикладів. Для порівняння зображень використовуються значення головних компонент, обчислених на наборі векторів, що є координатами ключових точок [2].

Рис 2.8 Контури зображення створені за допомогою перетворення Хау

Головною задачею при розпізнаванні по контурах є правильне виділення цих контурів. У загальному випадку ця задача по складності порівнянна безпосередньо з розпізнаванням зображень. Крім того, використання цього методу самого по собі для задачі розпізнавання недостатньо.

Функція подібності з одним джетом у фіксованій позиції і іншим із змінною позицією є достатньо гладкою, для того, щоб одержати швидку і надійну збіжність при пошуку із застосуванням простих методів, таких як дифузія або градієнтний спуск. Досконаліші функції подібності залучають інформацію про фазу.

Для різних ракурсів відповідні ключові точки відмічені вручну на навчальному наборі. Крім того, щоб для одного і того ж обличчя представити різні варіації його зображення в одному і тому ж графі, для кожної точки використовуються декілька джетів, кожний з яких може відповідати різним локальним характеристикам даної точки, наприклад розплющеному і закритому оку.

Майже аналогічинм є метод еластичного графу. В цьому випадку відмінність між двома графами d (Q,R) обчислюється за допомогою деякої функції, що враховує як значення ознак - вага вершин, так і ступінь деформації ребер графа.

Рис.2.9 Еластичний граф, що покриває зображення обличчя

Деформація графа відбувається шляхом зсуву кожної з його вершин на деяку відстань в певних напрямах щодо її початкового положення і вибору такої позиції, при якій різниця у вазі вершин графа, що деформується, і відповідній їй вершині еталона буде мінімальною (рис.2.9). Дана операція виконується по черзі для всіх вершин графа до тих пір, поки не буде досягнуте найменше (для даної пари графів) значення d (Q,R) [5].

2.1.7 Методи, засновані на геометричних характеристиках обличчя

Один з найперших методів - це аналіз геометричних характеристик обличчя. Спочатку застосовувався в криміналістиці і був там детально розроблений. Потім з'явилися комп'ютерні реалізації цього методу. Суть його полягає у виділенні набору ключових точок (або областей) обличчя і подальшому виділенні набору ознак. Кожна ознака є або відстанню між ключовими точками, або відношенням таких відстаней. На відміну від методу порівняння еластичних графів тут відстані вибираються не як дуги графів. Набори найбільш інформативних ознак виділяються експериментально (рис.2.10).

Ключовими точками можуть бути кути очей, губ, кінчик носа, центр ока і т.п. Як ключові області можуть бути прямокутні області, що включають очі, ніс, рот [13].

Рис 2.10 Ідентифікаційні точки і відстані

В процесі розпізнавання порівнюються ознаки невідомого обличчя з ознаками, що зберігаються в базі. Задача знаходження ключових точок наближається до трудомісткості безпосередньо розпізнавання, і правильне знаходження ключових точок на зображенні багато в чому визначає успіх розпізнавання. Тому зображення обличчя людини повинне бути без шумів, що заважають процесу пошуку ключових точок. До таких завад відносять окуляри, бороди, прикраси, елементи зачіски і макіяжа. Освітлення бажане рівномірне і однакове для всіх зображень. Крім того, зображення обличчя повинно мати фронтальний ракурс, можливо з невеликими відхиленнями. Вираз обличчя повинен бути нейтральним. Це пов'язано з тим, що в більшості методів немає моделі врахування таких змін [14].

Таким чином, даний метод пред'являє строгі вимоги до умов зйомки, потребує надійного механізму знаходження ключових точок для загального випадку. Крім того, потрібне застосування досконаліших методів класифікації або побудови моделі змін. У загальному випадку цей метод не найоптимальніший, проте, для деяких специфічних задач перспективний. До таких задач можна віднести документарний контроль, коли вимагається порівняти зображення обличчя, одержаної у нинішній момент з фотографією в документі. При цьому інших зображень цієї людини немає, і, отже, механізми класифікації, засновані на аналізі тренувального набору, недоступні.



Загрузить файл

Похожие страницы:

  1. Уява людини, її основні види та механізм

    Курсовая работа >> Психология
    ... проблему вибору, штовхає до пошуку, орієнтує наше мислення ... мимовільно бачимо в них обличчя людини або контур тварини. Хлопчик ... нка не регулюється певною програмою і складається з серії ... життя і діяльності у зв'язку з пошуком нового, з проявом творчої уяви. 2.4 ...
  2. Пошук національних коренів у мистецтві Михайло Бойчук і бойчукісти

    Реферат >> Культура и искусство
    ... насамперед у живописі, нові пошуки пов’язувалися головним чином з ... є руку. Худе, виснажене обличчя дівчинки з неприродно загостреними ... М.Бойчук, європейськи освічена людина, митець і деякою мірою ... був не тільки новою стильовою програмою, а й цілісною, ...
  3. Людиномірність предмета філософії

    Контрольная работа >> Философия
    ... сця в ньому людини разом з життєвими позиціями, програмами та іншими ... наявного (здобутого в широкому творчо-діалектичному пошуку) матеріалу. У подальшому розвитку ... не дає їй втратити своє власне обличчя, загубитися в однаковості й монотонній повторюваност ...
  4. Програма социлогического дослiдження Рівня міжетнічної толерантності жителів м. Донецька

    Реферат >> Социология
    ... івника) _______________________ (дата) КУРСОВА РОБОТА «ПРОГРАМА СОЦІОЛОГІЧНОГО ДОСЛІДЖЕННЯ ... у людини особливих здібностей і вмінь: культури ведення переговорів, мистецтва пошуку компром ... вони подаються не важливими перед обличчям основних проблем, які потрі ...
  5. Украинские сочинения

    Сочинение >> Литература и русский язык
    ... ЇНСЬКА МОВА 5 КЛАС П'ятикласникам програма пропонує навчитися виконувати такі видитворчих ... року. На картині бачимо зосереджене обличчя молодої людини. Гарної,сповненої гідності, з ... поетичному рядку! Основна суть поеми — людина, пошук істини, утвер-джен-ня ...

Хочу больше похожих работ...

Generated in 0.0015168190002441