Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

Информатика->Дипломная работа
Созданный интернет-магазин позволяет просмотреть продаваемое телекоммуникационного оборудование и оформить заказ для покупки Пользователи могут задать...полностью>>
Информатика->Курсовая работа
Сэмюэл Финли Бриз Морзе родился 27 апреля 1791 г в семье известного местного проповедника Джедида Морзе в американском городишке Чарлстаун (шт Массачу...полностью>>
Информатика->Курсовая работа
Стандартный «Калькулятор» Windows является, пожалуй, единственной имеющей широкое распространение программой, предназначенной для мелких вычислений Ег...полностью>>
Информатика->Курсовая работа
Гинекологические патологии занимают значительное место в структуре заболеваемости у женщин Патологии миометрия (миома матки, аденомиоз) являются наибо...полностью>>

Главная > Реферат >Информатика

Сохрани ссылку в одной из сетей:

Глава 1. Классификация интеллектуальных информационных систем

1.1. Особенности и признаки интеллектуальности информационных систем

Любая информационная система (ИС) выполняет следующие функции: воспринимает вводимые пользователем информационные запросы и необходимые исходные данные, обрабатывает введенные и хранимые в системе данные в соответствии с известным алгоритмом и формирует требуемую выходную информацию. С точки зрения реализации перечисленных функций ИС можно рассматривать как фабрику, производящую информацию, в которой заказом является информационный запрос, сырьем - исходные данные, продуктом - требуемая информация, а инструментом (оборудованием) - знание, с помощью которого данные преобразуются в информацию.

Знание имеет двоякую природу: фактуальную и операционную.

  • Фактуальное знание - это осмысленные и понятые данные. Данные сами по себе - это специально организованные знаки на каком-либо носителе.

  • Операционное знание - это те общие зависимости между фактами, которые позволяют интерпретировать данные или извлекать из них информацию. Информация по сути - это новое и полезное знание для решения каких-либо задач.

Часто фактуальное знание называют экстенсиональным (детализированным), а операционное знание - интенсиональным (обобщенным).

Процесс извлечения информации из данных сводится к адекватному соединению операционного и фактуального знаний и в различных типах ИС выполняется по-разному. Самый простой путь их соединения заключается в рамках одной прикладной программы:

Программа = Алгоритм (Правила преобразования данных +

Управляющая структура) + Структура данных

Таким образом, операционное знание (алгоритм) и фактуальное знание (структура данных) неотделимы друг от друга. Однако, если в ходе эксплуатации ИС выяснится потребность в модификации одного из двух компонентов программы, то возникнет необходимость ее переписывания. Это объясняется тем, что полным знанием проблемной области обладает только разработчик ИС, а программа служит “недумающим исполнителем” знания разработчика. Конечный же пользователь вследствие процедурности и машинной ориентированности представления знаний понимает лишь внешнюю сторону процесса обработки данных и никак не может на него влиять.

Следствием перечисленных недостатков является плохая жизнеспособность ИС или неадаптивность к изменениям информационных потребностей. Кроме того, в силу детерминированности алгоритмов решаемых задач ИС не способна к формированию у пользователя знания о действиях в не полностью определенных ситуациях.

В системах, основанных на обработке баз данных (СБД - Data Base Systems), происходит отделение фактуального и операционного знаний друг от друга. Первое организуется в виде базы данных, второе - в виде программ. Причем программа может автоматически генерироваться по запросу пользователя (например, реализация SQL или QBE запросов). В качестве посредника между программой и базой данных выступает программный инструмент доступа к данным - система управления базой данных (СУБД):

СБД = Программа <=> СУБД <=> База данных

Концепция независимости программ от данных позволяет повысить гибкость ИС по выполнению произвольных информационных запросов. Однако, эта гибкость в силу процедурности представления операционного знания имеет четко определенные границы. Для формулирования информационного запроса пользователь должен ясно представлять себе структуру базы данных и до определенной степени алгоритм решения задачи. Следовательно, пользователь должен достаточно хорошо разбираться в проблемной области, в логической структуре базы данных и алгоритме программы. Концептуальная схема базы данных выступает в основном только в роли промежуточного звена в процессе отображения логической структуры данных на структуру данных прикладной программы.

Общие недостатки традиционных информационных систем, к которым относятся системы первых двух типов, заключаются в слабой адаптивности к изменениям в предметной области и информационным потребностям пользователей, в невозможности решать плохо формализуемые задачи, с которыми управленческие работники постоянно имеют дело. Перечисленные недостатки устраняются в интеллектуальных информационных системах (ИИС).

Анализ структуры программы показывает возможность выделения из программы операционного знания (правил преобразования данных) в так называемую базу знаний, которая в декларативной форме хранит общие для различных задач единицы знаний. При этом управляющая структура приобретает характер универсального механизма решения задач (механизма вывода), который связывает единицы знаний в исполняемые цепочки (генерируемые алгоритмы) в зависимости от конкретной постановки задачи (сформулированной в запросе цели и исходных условий). Такие ИС становятся системами, основанными на обработке знаний (СБЗ - Knowledge Base (Based) Systems):

СБЗ = База знаний <=> Управляющая структура <=> База данных

(Механизм вывода)

Для интеллектуальных информационных систем, ориентированных на генерацию алгоритмов решения задач, характерны следующие признаки:

  • развитые коммуникативные способности,

  • умение решать сложные плохо формализуемые задачи,

  • способность к самообучению,

Коммуникативные способности ИИС характеризуют способ взаимодействия (интерфейса) конечного пользователя с системой, в частности, возможность формулирования произвольного запроса в диалоге с ИИС на языке, максимально приближенном к естественному.

Сложные плохо формализуемые задачи - это задачи, которые требуют построения оригинального алгоритма решения в зависимости от конкретной ситуации, для которой могут быть характерны неопределенность и динамичность исходных данных и знаний.

Способность к самообучению - это возможность автоматического извлечения знаний для решения задач из накопленного опыта конкретных ситуаций.

В различных ИИС перечисленные признаки интеллектуальности развиты в неодинаковой степени и редко, когда все четыре признака реализуются одновременно. Условно каждому из признаков интеллектуальности соответствует свой класс ИИС (рис. 1.1):

  • Системы с интеллектуальным интерфейсом;

  • Экспертные системы;

  • Самообучающиеся системы;

Р
ис. 1.1. Классификация ИИС

1.2. Системы с интеллектуальным интерфейсом

Интеллектуальные базы данных отличаются от обычных баз данных возможностью выборки по запросу необходимой информации, которая может явно не храниться, а выводиться из имеющейся в базе данных. Примерами таких запросов могут быть следующие:

- “Вывести список товаров, цена которых выше среднеотраслевой”,

- “Вывести список товаров-заменителей некоторой продукции”,

- “Вывести список потенциальных покупателей некоторого товара” и т.д.

Для выполнения первого типа запроса необходимо сначала проведение статистического расчета среднеотраслевой цены по всей базе данных, а уже после этого собственно отбор данных. Для выполнения второго типа запроса необходимо вывести значения характерных признаков объекта, а затем поиск по ним аналогичных объектов. Для третьего типа запроса требуется сначала определить список посредников-продавцов, выполняющих продажу данного товара, а затем провести поиск связанных с ними покупателей.

Во всех перечисленных типах запросов требуется осуществить поиск по условию, которое должно быть доопределено в ходе решения задачи. Интеллектуальная система без помощи пользователя по структуре базы данных сама строит путь доступа к файлам данных. Формулирование запроса осуществляется в диалоге с пользователем, последовательность шагов которого выполняется в максимально удобной для пользователя форме. Запрос к базе данных может формулироваться и с помощью естественно-языкового интерфейса.

Естественно-языковой интерфейс предполагает трансляцию естественно-языковых конструкций на внутримашинный уровень представления знаний. Для этого необходимо решать задачи морфологического, синтаксического и семантического анализа и синтеза высказываний на естественном языке. Так, морфологический анализ предполагает распознавание и проверку правильности написания слов по словарям, синтаксический контроль - разложение входных сообщений на отдельные компоненты (определение структуры) с проверкой соответствия грамматическим правилам внутреннего представления знаний и выявления недостающих частей и, наконец, семантический анализ - установление смысловой правильности синтаксических конструкций. Синтез высказываний решает обратную задачу преобразования внутреннего представления информации в естественно-языковое.

Естественно-языковый интерфейс используется для:

  • доступа к интеллектуальным базам данных;

  • контекстного поиска документальной текстовой информации;

  • голосового ввода команд в системах управления;

  • машинного перевода c иностранных языков.

Гипертекстовые системы предназначены для реализации поиска по ключевым словам в базах текстовой информации. Интеллектуальные гипертекстовые системы отличаются возможностью более сложной семантической организации ключевых слов, которая отражает различные смысловые отношения терминов. Таким образом, механизм поиска работает прежде всего с базой знаний ключевых слов, а уже затем непосредственно с текстом. В более широком плане сказанное распространяется и на поиск мультимедийной информации, включающей помимо текстовой и цифровой информации графические, аудио и видео- образы.

Системы контекстной помощи можно рассматривать, как частный случай интеллектуальных гипертекстовых и естественно-языковых систем. В отличие от обычных систем помощи, навязывающих пользователю схему поиска требуемой информации, в системах контекстной помощи пользователь описывает проблему (ситуацию), а система с помощью дополнительного диалога ее конкретизирует и сама выполняет поиск относящихся к ситуации рекомендаций. Такие системы относятся к классу систем распространения знаний (Knowledge Publishing) и создаются как приложение к системам документации (например, технической документации по эксплуатации товаров).

Системы когнитивной графики позволяют осуществлять интерфейс пользователя с ИИС с помощью графических образов, которые генерируются в соответствии с происходящими событиями. Такие системы используются в мониторинге и управлении оперативными процессами. Графические образы в наглядном и интегрированном виде описывают множество параметров изучаемой ситуации. Например, состояние сложного управляемого объекта отображается в виде человеческого лица, на котором каждая черта отвечает за какой-либо параметр, а общее выражение лица дает интегрированную характеристику ситуации.

Системы когнитивной графики широко используются также в обучающих и тренажерных системах на основе использования принципов виртуальной реальности, когда графические образы моделируют ситуации, в которых обучаемому необходимо принимать решения и выполнять определенные действия.



Загрузить файл

Похожие страницы:

  1. Интеллектуальные информационные системы (2)

    Реферат >> Информатика
    ... можно представить этапами: «информационные системы» (ИС), «автоматизированные информационные системы» (АИС), «интеллектуальные информационные системы» (ИИС). Интеллектуальная информационная система - это компьютерная модель ...
  2. Интеллектуальные информационные системы (4)

    Курсовая работа >> Информатика
    ... Курсовая работа по дисциплине: Информационные системы по теме: Интеллектуальные информационные системы Выполнил: студент 4 курса ... статистика», 2001. – 368 с. Луценко, Е.В. Интеллектуальные информационные системы/ Е.В. Луценко, Краснодар: КубГАУ, 2006. – 615 ...
  3. Интеллектуальные информационные системы (5)

    Курсовая работа >> Информатика
    ... работа по дисциплине: «Интеллектуальные информационные системы» Выполнила: Махонина Анна Владимировна ... на курсовую работу РАБОТА С СИСТЕМОЙ Пролог-Д Ва- риант Тема1 ... встроенные предикаты Рекурсия Графические возможности системы Обработка списков № задания № ...
  4. Интеллектуальные информационные системы в профессиональной деятельности

    Лекция >> Информатика, программирование
    ЛЕКЦИЯ Интеллектуальные информационные системы в профессиональной деятельности Учебные и воспитательные цели: 1. Ознакомить курсантов с понятием и классификацией интеллектуальных информационных систем ...
  5. Разработка алгоритма работы и реализация интеллектуальной информационной системы

    Курсовая работа >> Информатика
    ... «Интеллектуальные информационные системы» Тема: «Разработка алгоритма работы и реализация интеллектуальной информационной системы» ... различные дополнения, повышающие значимость интеллектуальной информационной системы как в информативном (наглядном) ...

Хочу больше похожих работ...

Generated in 0.0068490505218506