Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

Биология->Реферат
Человек владеет прекрасным даром - разумом с его пытливым полетом, как в отдаленное прошлое, так и в грядущее, миром мечты и фантазии, творческим реше...полностью>>
Биология->Реферат
Диалектика (греч. dialektika – веду беседу, спор) – учение о наиболее общих законах развития природы, общества и познания, при котором различные явлен...полностью>>
Биология->Реферат
Демография (от греч. demos — народ и... графия), наука, изучающая население и закономерности его развития в общественно-исторической обусловленности. ...полностью>>
Биология->Реферат
Почти все мы являемся носителями тех или иных генетических дефектов, и дефекты эти возникают постоянно, в продолжение всей нашей жизни.  От чего они п...полностью>>

Главная > Реферат >Биология

Сохрани ссылку в одной из сетей:

Фаза инверсии. После исчезновения ПП вход Na+ в клетку продолжается (т-ворота Na-каналов еще открыты), поэтому число положительных ионов в клетке превосходит число отрицательных ионов, заряд внутри клетки становится положительным, снаружи — отрицательным. Процесс перезарядки мембраны представляет собой вторую фазу потенциала действия — фазу инверсии. Теперь электрический градиент препятствует входу Na+ внутрь клетки (положительные заряды отталкиваются ДРУГ от друга), Na-проводимость снижается. Тем не менее некото-Р°е время (доли миллисекунды) Na+ продолжает входить в клет-КУ. о чем свидетельствует продолжающееся нарастание ПД. Это означает, что концентрационный градиент, обеспечивающий движение Na+ в клетку, сильнее электрического, препятствующего входу Na+ в клетку. Во время деполяризации мембраны увеличивается проницаемость ее и для Са2+, который также идет в клетку, но в нервных волокнах, нейронах и клетках скелетной мускулатуры роль Са2+ в развитии ПД мала. В клетках гладкой мышцы и миокарда его роль существенна. Таким образом, вся восходящая часть пика ПД в большинстве случаев обеспечивается в основном входом Na+ в клетку.

Примерно через 0,5 — 2 мс и более после начала деполяризации (это время зависит от вида клетки) рост ПД прекращается в результате закрытия натриевых инактивационных г-ворот и открытия ворот К-каналов, т.е. вследствие увеличения проницаемости для К+ и резкого возрастания выхода его из клетки. Препятствует также росту пика ПД снижение электрического градиента Na+ (клетка внутри в этот момент заряжена положительно), а также выход К+ из клетки по каналам утечки. Поскольку К+ находится преимущественно внутри клетки, он согласно концентрационному градиенту быстро выходит из нее, вследствие чего уменьшается число положительно заряженных ионов в клетке. Заряд клетки снова начинает уменьшаться. Во время нисходящей составляющей фазы инверсии выходу К+ из клетки способствует также и электрический градиент. К+ выталкивается положительным зарядом из клетки и притягивается отрицательным зарядом снаружи клетки. Так продолжается до полного исчезновения положительного заряда внутри клетки, когда начинается следующая фаза ПД — фаза реполяризации. Калий выходит из клетки не только по управляемым каналам, ворота которых открыты, но и по неуправляемым, т.е. каналам утечки, что несколько замедляло ход восходящей части ПД и ускоряло ход нисходящей составляющей ПД.

Таким образом, изменение мембранного потенциала покоя ведет к последовательному открытию или закрытию электроуправляемых ворот ионных каналов и движению ионов согласно электрохимическому градиенту — возникновению ПД. Все фазы являются регенеративными: необходимо только достичь критического уровня деполяризации, далее ПД развивается за счет потенциальной энергии клетки в виде электрохимических градиентов, т.е. вторично-активно.

Амплитуда ПД складывается из величины ПП (потенциала покоя) и величины фазы инверсии, составляющей у разных клеток 10— 50мВ. Если мембранный ПП мал, амплитуда ПД этой клетки небольшая.

Фаза реполяризации связана с тем, что проницаемость клеточной мембраны для К+ все еще высока (активационные ворота калиевых каналов открыты), К+ продолжает быстро выходить из клетки согласно концентрационному градиенту. Поскольку клетка теперь снова внутри имеет отрицательный заряд, а снаружи — положительный, электрический градиент препятствует выходу К+ из клетки, что снижает его проводимость, хотя он продолжает выходить. Это объясняется тем, что действие концентрационного градиента выражено значительно сильнее электрического градиента. Таким образом, вся нисходящая часть пика ПД обусловлена выходом К+ из клетки. Нередко в конце ПД наблюдается замедление реполяризации, что объясняется уменьшением проницаемости клеточной мембраны для К+ и замедлением выхода его из клетки из-за закрытия ворот К-каналов. Следующая причина замедления тока К+ из клетки связана с возрастанием положительного потенциала наружной поверхности клетки и формированием противоположно направленного электрического градиента.

При наличии определенного ПП, как следует из описанных механизмов, ПД не должен возникать, если клетку перенести в солевой раствор, не содержащий Na+, что и было продемонстрировано в экспериментах. Если аксон помещать в растворы с различной концентрацией Na+, величина ПД будет уменьшаться с уменьшением концентрации Na+ в окружающей нервное волокно среде. ПД также уменьшается, если частично заблокировать Na-каналы тетродотоксином. При их полной блокаде ПД вообще не возникает. Возможность временного нарушения работы Na-каналов широко используется в клинической практике. Так, с помощью местных анестетиков расстраивается механизм управления ворот Na-каналов. Это приводит к прекращению проведения возбуждения в соответствующем участке нерва, устранению болевых ощущений, например при хирургических вмешательствах. Таким образом, главную роль в возникновении ПД играет Na+, входящий в клетку при повышении проницаемости клеточной мембраны и обеспечивающий всю восходящую часть пика ПД. При замене Na^" в среде на другой ион, например холин, ПД в нервной и мышечной клетках скелетной мускулатуры не возникает. Однако проницаемость мембраны для К+ тоже играет важную роль. Если повышение проницаемости для К+ предотвратить тетраэтиламмонием, мембрана после ее деполяризации реполяризуется гораздо медленнее, только за счет медленных неуправляемых каналов (каналов утечки ионов), через которые К+ будет выходить из клетки.

Роль Са2+ в возникновении ПД в нервных и мышечных клетках скелетной мускулатуры незначительна. Однако Са2+ играет важную РОЛЬ в возникновении ПД сердечной и гладкой мышц, в передаче импульсов от одного нейрона к другому, от нервного волокна к мышечному, в обеспечении мышечного сокращения. Снижение содержания Са2+ в крови на 50%, что иногда встречается в клинической практике, может привести к судорожным сокращениям скелетных мышц. Это объясняется значительным повышением возбудимости нервных и мышечных клеток в результате снижения ПП из-за уменьшения степени нейтрализации отрицательных фиксированных зарядов на поверхности клеточной мембраны и отрицательно заряженных карбоксильных групп интерстиция. Вследствие этого повышается реактивность нейронов, так как ПП приближается к Екр, кроме того, начинается активация Na-каналов. В ответ на поступление самой незначительной импульсации нейроны начинают генерировать ПД в большом количестве, что проявляется в судорожных сокращениях скелетной мускулатуры. При этом нейроны ЦНС и нервные волокна могут разряжаться и спонтанно.

Следовые явления в процессе возбуждения клетки. В конце ПД, например в скелетной мышце, нередко наблюдается замедление реполяризации, что называют отрицательным следовым потенциалом. Затем может быть зарегистрирована гиперполяризация клеточной мембраны, что более характерно для нервных клеток. Это явление называют положительным следовым потенциалом. Вслед за ним может возникнуть частичная деполяризация клеточной мембраны, которую также называют отрицательным следовым потенциалом, как и в случае замедления фазы реполяризации. Во-первых, необходимо отметить, что имеет место терминологическая путаница (два разных по происхождению отрицательных следовых потенциала). Во-вторых, замедление фазы реполяризации вообще не является следовым процессом — это часть фазы реполяризации, которая задерживается вследствие уменьшения проницаемости клеточной мембраны для К+ и замедления выхода его из клетки. В-третьих, термин «потенциал» применяется в других случаях: ПП, ПД, локальный потенциал, рецепторный потенциал, синапти-ческий потенциал. Вслед за ПД возникают не потенциалы, а сначала следовая гиперполяризация, затем — следовая деполяризация. Причем следовые явления возникают после полного восстановления мембранного потенциала до исходного уровня, но не как результат замедления фазы реполяризации, являющейся одной из фаз ПД. В сердечной и гладкой мышцах тоже наблюдается замедленная реполяризация, но на более высоком уровне — плато.

Следовая гиперполяризация клеточной мембраны обычно является следствием еще сохраняющейся повышенной проницаемости клеточной мембраны для К+, она характерна для нейронов. Активационные ворота К-каналов еще не полностью закрыты, поэтому К+ продолжает выходить из клетки согласно концентрационному градиенту, что и ведет к гиперполяризации клеточной мембраны. Постепенно проницаемость клеточной мембраны возвращается к исходной (натриевые и калиевые ворота возвращаются в исходное состояние), а мембранный потенциал становится таким же, каким он был до возбуждения клетки. Na/K-помпа непосредственно за фазы потенциала действия не отвечает, хотя она и продолжает работать во время развития ПД: ионы перемещаются с огромной скоростью согласно концентрационному и частично электрическому градиентам. Возможно К+-помпа способствует развитию следовой гиперполяризации. В некоторых клетках, например в тонких немиелинизированных нервных волокнах (болевых афферентах) хорошо выражена длительная следовая гиперполяризация. Она обеспечивается работой Na/K-насоса, активируемого процессом возбуждения (накопившимся в клетке Na+: на каждые 2К+, возвращаемые в клетку, выводится 3Na+ из клетки). Если блокировать выработку энергии, то эта гиперполяризация исчезает.

Следовая деполяризация также характерна для нейронов, она может быть зарегистрирована и в клетках скелетной мышцы. Механизм следовой деполяризации изучен недостаточно. Возможно, Это связано с кратковременным повышением проницаемости клеточной мембраны для Na+ и входом его в клетку согласно концентрационному и электрическому градиентам.

Исследование ионных токов. Запас ионов в клетке

ПД обусловлен циклическим процессом входа Na+ в клетку (восходящая часть пика) и последующим выходом К+ из клетки (нис-°Дящая часть ПД), что является, в свою очередь, следствием активации и инактивации Na- и К-каналов, т.е. изменением проницаемости клеточной мембраны.

Наиболее распространенным методом изучения функций ионных каналов является метод фиксации напряжения (voltage-clamp). Мембранный потенциал с помощью подачи электрического напряжения изменяют и фиксируют на определенном уровне, затем клеточную мембрану градуально деполяризуют, что ведет к открытию ионных каналов и возникновению ионного тока, который мог бы деполяризовать клетку. Однако при этом пропускается электрический ток, равный по величине, но противоположный по знаку ионному току, поэтому трансмембранная разность потенциалов не изменяется. Это дает возможность изучить величину ионного тока через мембрану. Применение различных блокаторов ионных каналов дает дополнительную возможность более глубоко изучить свойства каналов.

Количественное соотношение между ионными токами по отдельным каналам в покое клетки, во время ПД и их кинетику можно выяснить с помощью метода локальной фиксации потенциала (patch clamp). К мембране подводят микроэлектродприсоску (внутри его создается разрежение) и, если на этом участке оказывается канал, исследуют ионный ток через него. В остальном методика подобна предыдущей. И в этом случае применяют специфические блокаторы каналов. В частности, при подаче на мембрану фиксированного деполяризующего потенциала было установлено, что через Na-каналы может проходить и К , но его ток в 10 — 12 раз меньше, а через К-каналы может проходить Na , его ток в 100 раз меньше, чем К+. В гладкомышечных клетках в генезе восходящей части ПД ведущую роль играет Са2+, поступающий в клетку; в кардиомиоцитах Са2+ играет важную роль в развитии плато ПД.

Запас ионов в клетке, обеспечивающих возникновение возбуждения (ПД), огромен. Концентрационные градиенты ионов в результате одного цикла возбуждения практически не изменяются. Клетка может возбуждаться до 5-Ю5 раз без подзарядки, т.е. без работы Na/K-насоса. Число импульсов, которое генерирует и проводит нервное волокно, зависит от его толщины, что определяет запас ионов. Чем толще нервное волокно, тем больше запас ионов, тем больше импульсов оно может генерировать (от нескольких сот до нескольких сотен тысяч) без участия Na/K-насоса. Однако в тонких С-волокнах на возникновение одного ПД расходуется около 1 % концентрационных градиентов Na+ и К+. Если заблокировать выработку энергии, то клетка будет еще многократно возбуждаться и в этом случае. В реальной же действительности Na/K-насос постоянно переносит Na+ из клетки, а К+ возвращает в клетку, в результате чего постоянно поддерживается концентрационный градиент Na и К+, что осуществляется за счет непосредственного расхода энергии, источником которой является АТФ. Имеются данные, что увеличение внутриклеточной концентрации Na+ сопровождается увеличением интенсивности работы Na/K-насоса. Это может быть связано исключительно с тем, что для переносчика становится доступно большее количество внутриклеточного Na+.



Загрузить файл

Похожие страницы:

  1. Сущность клеточного цикла

    Закон >> Биология
    ... структурно-функциональных характеристик клетки во времени составляют содержание ее жизненного цикла (клеточного цикла). Клеточный ... важнейшим событием – ядерная мембрана дефрагментируется на пузырьки и ... оболочка. Двойная мембрана возрождается из пузырьков ...
  2. Характеристика генетического аппарата бактерий

    Реферат >> Биология
    ... структурные функциональные «домашнего хозяйства» гены метаболизма гены клеточных ... на внутренней поверхности наружной мембраны; 2) субъединица В присоединяется ... meningitidis. Таблица 2 Сравнительная характеристика наиболее изученных секреторных систем ...
  3. Клеточная поверхность рецепторы рециклирование мембран и передача сигналов

    Курсовая работа >> Биология
    ... клеточный ответ. Такие «суперсемейства» состоят из структурно родственных, но функционально ... 9.2 перечислены некоторые рецепторы плазматической мембраны, участвующие в поглощении специфических ... на выделении и характеристике хорошо известных субпопуляций ...
  4. Антиоксидантная система при внутриутробной гипоксии плода

    Дипломная работа >> Биология
    ... и накопления свободных радикалов происходит нарушение структурно-функциональной целостности клеточных мембран, освобождение лизосомальных ферментов ... возросла, вытесняются из глубоких слоев мембраны к поверхности, что облегчает процесс самообновления ...
  5. Предмет, объект, метод и задачи валеологии. Основные понятия валеологии

    Реферат >> Медицина, здоровье
    ... обеспечивают перенос минеральных солей через клеточные мембраны и внутриклеточные структуры. В повседневной жизни ... . Преобладание эстрогенов обусловливает появление тех структурно-функциональных характеристик, которые и определяют реализацию женщиной обеих ...

Хочу больше похожих работ...

Generated in 0.002000093460083