Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

Промышленность, производство->Курсовая работа
Автоматическое управление различными техническими объектами является одним из самых прогрессивных направлений в развитии техники. При автоматическом р...полностью>>
Промышленность, производство->Дипломная работа
На судах торгового флота отдельные устройства и приборы механической, гидро- и электроавтоматики стали нормой оборудования только после второй мировой...полностью>>
Промышленность, производство->Курсовая работа
Блок цилиндров (или блок-картер) воспринимает нагрузки от вращающихся и поступательно движущихся деталей. Наиболее распространенные рядные четырехцили...полностью>>
Промышленность, производство->Дипломная работа
Применяемые в настоящее время аналитические и аналоговые методы решения задач затвердевания слитка предполагают идеализацию его реальных форм, что сни...полностью>>

Главная > Контрольная работа >Промышленность, производство

Сохрани ссылку в одной из сетей:

Схема лазера на свободных электронах:

1-зеркало; 2-пучок; 3-луч лазера; 4-знакопеременное магнитное поле; 5-ускоритель электронов.

Из рисунка видно, что ускори­телем электронов является устройство, выполненное в виде тороида, вокруг которого располагаются магнитные катушки. Магнитное поле, создаваемое этими катушками, управляется по определенному закону, обеспечивающему ускорение электронов от одного оборота к другому. Это позволяет получить очень высокие скорости электронов. Выбрасываемые из тороида электроны попадают в уст­ройство, называемое линейным ускорителем. Оно образовано магнитами с чередующимися полюсами. Это устройство напоминает резонатор. В нем образуется оп­тическое излучение, которое и выводится наружу. По­скольку процесс преобразования энергии электронов в оптическое излучение осуществляется непосредственно, то такой лазер обладает высоким кпд и может работать в режиме повторяющихся импульсов. Другим, очень важ­ным преимуществом лазера на свободных электронах, как утверждается, является возможность перестройки длины волны излучения, что особенно важно для обеспе­чения более эффективного прохождения излучения в ат­мосфере. Первые экспериментальные установки были слишком громоздкими. Ряд последующих образцов позволил зарубежным специалистам высказать мнение, что в будущем лазеры на свободных электронах найдут применение в системах оружия, размещаемого на космических и авиационных летательных аппаратах

5.8 Лазер на иттрий-алюминиевом гранате (ИАГ).

Этот лазер получил широкое распространение, благо­даря низкому порогу генерации и высокой теплопроводности активного элемента, что позволяет получать гене­рацию при большой частоте повторения импульсов и в непрерывном режиме.

Длина волны излучения лазера равна 1,064 мкм, мак­симальная длина активного элемента около 150 мм, энергия в одиночном импульсе до 30 Дж, длительность импульсов около 10 нс, а предельная частота повторе­ния – 500, кпд около 1 %.

5.9 Апротонный жидкостный лазер.

Свое название этот лазер получил потому, что в не­органических растворителях с активными лазерными ионами отсутствует водород. Именно отсутствие групп атомов с высококолебательными частотами и позволяет осуществить в них эффективную лазерную генерацию Nd3+ по четырехуровневой схеме с поглощением света накачки собственными полосами поглощения неоди­ма.

Эти лазеры имеют в своей основе токсичные и вязкие жидкости, которые к тому еще и агрессивны, что значи­тельно сужает выбор возможных конструкционных мате­риалов (кварц, стекло, тефлон) и вынуждает производить тщательную герметизацию кювет. Весьма сложной задачей является конструирование узлов прокачки рабо­чей жидкости.

Длина волны генерации составляет 1,056; 1,0525 мкм. Лазеры могут работать как в режиме свободной генера­ции, так и в моноимпульсном режиме, причем для них характерен режим самомодуляции добротности, проявляющийся при малых значениях добротности резонатора.

5.10 Лазер на парах меди.

Одним из достижении лазерной техники является по­лучение стимулированного излучения от среды, образо­ванной парами меди. Эти пары являются следствием газового разряда в гелии при большой частоте повторения импульсов и значительной средней мощности, обес­печивающей получение высокой температуры в газораз­рядной трубке – около 1600 °К. Излучение сосредо­точено на волнах 0,51 и 0,58 мкм. Кроме высокого коэффициента усиления, такие лазеры дают кпд, дохо­дящий до 1%. Средняя мощность лазера достигает 50Вт.

В связи с большим коэффициентом усиления и малой длительностью существования инверсии населенности для получения достаточно малой расходимости луча эффективно применение неустойчивых резонаторов.

5.11 Газодинамический лазер.

Нагретая до высокой температуры (1000—2000 К) смесь CO2 и N2 при истечении с большой скоростью через расширяющееся сопло сильно охлаждается. Верхний и нижний энергетический уровни при этом термоизолируются с различной скоростью, в результате чего образуется инверсная заселенность. Следовательно, образовав на выходе из сопла оптический резонатор, можно за счет этой инверсной заселенности генерировать лазерное излучение. Действующие на этом принципе лазеры называются газодинамическими. Они позволяют получать очень большие мощности излучения в непрерывном режиме.

6. Применение лазеров.

6.1 Лазеры в медицине.

Свойством лазерного луча сверлить и сваривать раз­личные материалы заинтересовались не только инжене­ры, но и медики. Они решили использовать его в каче­стве скальпеля. По сравнению с обычным такой скаль­пель обладает целым рядом достоинств:

во-первых, лазерный скальпель отличается постоянст­вом режущих свойств, надежностью в работе;

во-вторых, лазерный луч рассекает ткань на расстоя­нии, не оказывая на нее какого-либо механического дав­ления;

в-третьих, лазерный скальпель имеет абсолютную сте­рильность, поскольку с тканью взаимодействует только излучение, причем в области рассечения возникает вы­сокая температура;

в-четвертых, лазерный луч производит почти бескров­ный разрез, поскольку с рассечением тканей коагулируют края раны, как бы «заваривая» мелкие сосуды;

в-пятых, лазерный луч позволяет хирургу хорошо видеть оперируемый участок, в то время как скальпель за­гораживает рабочее поле.

Кроме того, рана от лазерного скальпеля (как пока­зали клинические наблюдения) почти не болит и отно­сительно скоро заживляется. Все это привело к тому, что лазерный скальпель был применен на внутренних органах грудной и брюшной полостей. Им делают операции на желудке, пищеводе, кишечнике, почках, печени, селезен­ке, сердце, делают кожно-пластические операции. Широ­ко используют в офтальмологии при лечении глазных болезней. Исторически сложилось так, что окулисты первые обратили внимание на возможность использова­ния лазера и внедрили его в клиническую практику.

Также лазеры применяются для лечения заболеваний слизистой оболочки рта, для сращивания костей после переломов, для ле­чения заболевания вен, приводящего к трофическим яз­вам, для лечения послеожоговых ран.

Трудно переоценить значение применения лазерной терапии при лечении многочисленных онкологических заболеваний, вызванных неконтролируемым делением видоизменённых клеток. Точно фокусируя луч лазера на скоплении раковых клеток, можно полностью уничтожить эти скопления, не повреждая здоровые клетки.

Разнообразные лазерные зонды широко используются при диагностике заболеваний различных внутренних органов, особенно в тех случаях, когда применение других методов невозможно или сильно затруднено.

Есть пример лечения ишемической болезни сердца с помощью лазера. Несмотря на значительные успехи современной медицины, ишемическая болезнь сердца остается одной из основных причин смертности взрослого населения ведущих стран мира. Ишемическая болезнь сердца — ухудшение кровоснабжения мышцы левого желудочка сердца (миокарда) — является одной из основных причин смертности населения индустриально развитых стран. По данным ВОЗ, надолго этого заболевания приходится до 60% смертельных исходов от всех видов сердечно­сосудистых заболеваний. До последнего времени единственным радикальным средством лечения ишемической болезни сердца являлась операция аорто-коронарного шунтирования (АКШ) — вве­дение обходных путей для коронарной артерии (байпасная хирургия), а также транслюминальная баллонная ангиопластика.

С середины 90-х годов в клинической практике получает распространение принципиально новый метод лечения ишемической болезни сердца — так называемая лазерная реваскуляризация миокарда (ТМЛР). В процессе такой операции в толще сердечной мышцы левого желудочка с помощью мощного лазерного излучения создаются каналы, открывающиеся в полость сердца. Эти каналы способствуют восстановлению кровообращения в ишемизированных зонах миокарда и предотвращают развитие инфаркта миокарда.

Процедура TMЛР предусматривает формиро­вание в миокарде (типичная толщина около 20 мм) до нескольких десятков каналов диаметром от 0,3 до 1,0 мм. Канал формируется в мышце работающего сердца за один мощный лазерный импульс. В этом случае импульс синхронизируется с R-зубцом электрокардиограммы пациента и может продол-жаться до T-зубца, что составляет около 150 мс, т.е. время воздействия излучения ограничено.

Во-первых, в этот момент времени левый желудочек сердца полностью наполнен кровью, которой поглощается часть прошедшего через канал излучения, что предохраняет от повреждения внутренние структуры сердца. Во-вторых, сводится к минимуму риск возникновения наведенной аритмии вследствие ударного воздействия лазерного импульса. Вероятность этого, по данным исследова­телей Texas Heart Institute, составляет для эксимерного лазера 67%, Ho:YAG - 55% и С02 лазера - 3%.

По сравнению с традиционной техникой аорто-коронарного шунтирования метод ТМЛР более прост в исполнении и существенно дешевле. Операция происходит на работающем сердце без использования аппарата искусственного кровообращения, относи­тельно малотравматична, а время непосредственно "Лазерной “ части не превышает, как правило, 30 мин.

6.2 Лазеры в информационных технологиях.

Поскольку лазерное излучение является электромагнитной волной, логично было бы предположить, что лазерный луч можно использовать для передачи информации примерно так же как мы передаём информацию с помощью радиоволн. С теоретической точки зрения никаких препятствий этому нет. Но на практике такая передача информации сталкивается с существенными трудностями. Эти трудности связаны с особенностями распространения света в атмосфере. Такое распространение, как известно, в значительной степени зависит от атмосферных помех: тумана, наличия пыли, атмосферных осадков и т.п. Не смотря на то, что лазерное излучение обладает совершенно уникальными свойствами, оно так же не лишено этих недостатков.

Одним из решений проблемы нейтрализации влияния атмосферных помех на распространение лазерного луча стало использование волоконно-оптических линий. Основу таких линий составляют тончайшие стеклянные трубочки (оптические волокна), уложенные в специальную непрозрачную оболочку. Конфигурация оптических волокон рассчитывается таким образом, чтобы при прохождении по ним лазерного луча возникал эффект полного отражения, что практически полностью исключает потери информации при её передаче. Волоконно-оптические линии обладают огромной пропускной способностью. По одной нитке такой линии можно одновременно передавать в несколько раз больше телефонных разговоров, чем по целому многожильному кабелю, составленному из традиционных медных проводов. Кроме того на распространение лазерного луча по волоконно-оптическим линиям не оказывают влияние практически никакие помехи. В настоящее время волоконно-оптические линии используются при передаче сигналов кабельного телевидения высокого качества, а так же для обмена информацией между компьютерами через интернет по выделенным линиям. Существуют уже и телефонные линии, построенные с использованием оптических волокон.



Загрузить файл

Похожие страницы:

  1. Лазерное излучение (3)

    Реферат >> Безопасность жизнедеятельности
    ... влияния лазерного излучения Лазерные излучения, их роль в процессах жизнедеятельности В связи с широким применением лазерных источников излучения в ... оптикой позволяет резко расширить возможности его применения в медицине. По гибкому светопроводу Л. ...
  2. Особенности лазерного излучения

    Реферат >> Биология
    ... 1. Особенности лазерного излучения…………………………………...…5 2. Лазерная технология……………………………………………….……12 3. Применение лазеров в военной технике (лазерная локация) ……..… ... ширине спектра лазерного излучения. Зная мощность лазерного излучения, ширину его спектра и ...
  3. Уникальные свойства лазерного излучения

    Курсовая работа >> Физика
    ... соответствующей ширине спектра лазерного излучения. Зная мощность лазерного излучения, ширину его спектра и угловую расходимость ... лазера в связи с его практическими применениями. В настоящее время области применения лазеров расширяются с каждым ...
  4. Лазерная маркировка защита промышленной продукции от подделки

    Реферат >> Промышленность, производство
    ... поверхности маркируемого материала под воздействием лазерного излучения. Изменение его оптических, химических или геометрических ... одной из наиболее эффективных областей применения лазерного метода. Поскольку при этом оказывается ...
  5. Лазеры и их применение (2)

    Реферат >> Физика
    ... Высокая монохроматичность и когерентность лазерного излучения обеспечивают успешное применение лазеров в спектроскопии, ... направленность лазерного излучения обеспечивают успешное применение лазеров в военной технике. Направленность лазерного излучения, его ...

Хочу больше похожих работ...

Generated in 0.001086950302124