Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

Математика->Лекция
В отличие от ДПФ, преобразование Габора позволяет локализовать сигнал в частотной и временной области. К недостаткам относится то, что ширина частотно...полностью>>
Математика->Реферат
Понятие «граф» – одно из самых простых и самых употребительных понятий в математике и других науках, хотя теория графов зародилась чуть ли не 250 лет ...полностью>>
Математика->Реферат
Знание аналитической геометрии необходимо современному менеджеру, чтобы грамотно толковать экономическую информацию, представляемую в виде различных г...полностью>>
Математика->Контрольная работа
Из рисунка 9 видно, что при изменении момента статического сопротивления, скорость падает – система имеет статическую ошибку. Для получения астатичной...полностью>>

Главная > Курсовая работа >Математика

Сохрани ссылку в одной из сетей:

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«АЗОВСКИЙ ОБЛАСТНОЙ МУЗЫКАЛЬНО-ПЕДАГОГИЧЕСКИЙ КОЛЛЕДЖ»

Курсовая работа

Тема: «Многоугольники. Площади многоугольников

в школьном курсе математики»

Специальность: 050201 Математика

Выполнила:

Студентка 4 курса

школьного отделения

Мешкова Анастасия

Научный руководитель:

Куйдина Е.И.

г. Азов

2007г.

Содержание

Введение ……………………………………………………………………….. 3

Глава I Многоугольник. Понятие площади многоугольника в высшей

школе……………………………………………………………………………..7

§1 Понятие многоугольника и его площади……………………….…….…….7

§2 Вывод формул для вычисления площадей треугольников и

четырехугольников…………………………………………………………..….11

2.1 Площадь квадрата………………………………………………….……11

2.2 Площадь прямоугольника………………………………………………13

2.3 Площадь треугольника………………………………………………….14

2.4 Площадь параллелограмма……………………………………………..16

2.5 Площадь трапеции………………………………………………………17

2.6 Площадь произвольного многоугольника……………………………..18

Глава II Изучение геометрии в 7-9 классах…………………………………...19

§1 Психолого-педагогическая характеристика подросткового

возраста…………………………………………………………………………..19

§2 Сравнительный анализ учебных пособий по данной теме авторов

Л.С. Атанасяна и А.В. Погорелова…………………………………………..…21

§3 Компьютер на уроках геометрии……………………………………………27

Заключение………………………………………………………………………28

Список используемой литературы……………………………………………...29

Приложение

Введение

Геометрия возникла еще в глубокой древности в связи с практическими потребностями человека: измерение расстояний, изготовление орудий труда определенных размеров, нахождение площади земельных участков и вместимости сосудов, вычисление объемов различных сооружений и т.д. Слово «геометрия» греческого происхождения («ге» - земля, «метрео» - мерю) и означает «землемерие». Отвлекаясь от физических свойств предметов, изучая лишь их размеры, форму и положение, человек пришел к отвлеченным понятиям геометрического тела и геометрической фигуры, поверхности, линии, точки, прямой, плоскости, отрезка и т.д. Геометрические фигуры встречаются в самых древних до нас математических документах: в «Московском» папирусе, в «папирусе Ахмеса» и в древневавилонских клинописных текстах, написанных около 4000 лет назад. В этих документах содержатся задачи, в которых выступает на первый план вычисление площадей и объемов отдельных фигур. В древних египетских и вавилонских математических документах упоминаются как треугольники, так и основные четырехугольники: параллелограммы, прямоугольники, квадраты, равнобедренные и прямоугольные трапеции.

Зачатки геометрических знаний, связанных с измерением площадей, теряются в глубине тысячелетий. Еще 4-5 тысяч лет назад вавилоняне умели определять площадь прямоугольника и трапеции в квадратных единицах. Квадрат издавна служит эталоном при измерении площадей благодаря многим своим замечательным свойствам. [8]

Древние египтяне 4000 лет назад использовали почти те же приемы, что и мы, для измерения площади прямоугольника, треугольника и трапеции: основание треугольника делилось пополам и умножалось на высоту; для трапеции же сумма параллельных сторон делилась пополам и умножалась на высоту и т.п. Для вычисления площади S прямоугольника со сторонами a,b,c,d (рис.01) применялась формула , т.е. умножались полусуммы противоположных сторон. Эта формула верна только для прямоугольника. С ее помощью можно вычислить приближенно площадь таких четырехугольников, у которых углы близки к прямым.

Для определения площади S равнобедренного треугольника ABC, в котором AB=AC, египтяне пользовались приближенной формулой: . Совершаемая при этом ошибка тем меньше, чем меньше разность между стороной AB и высотой AD треугольника, иными словами, чем ближе вершина ВС) к основанию D высоты из А. Вот почему данная формула применима лишь для треугольников со сравнительно малым углом при вершине.[8]

Благодаря многим ученым древности, было положено основание для выведения формул, точно определяющих площадь любого многоугольника.

Нахождение площадей многоугольников используется в планиметрии и стереометрии при решении задач. В курсе математического анализа площадь плоских фигур находится с использованием определенного интеграла. Помимо геометрии площади используются во многих смежных с геометрией науках, таких как физика, география, астрономия, геология, что объясняет актуальность данной темы.

Тема «Площади фигур» изучается в основной школе в 8-9 классах.

Практика преподавания в школе по различным учебникам, сменяющим друг друга, убеждает в том, что, несмотря на напряженные поиски и безусловные достижения методики преподавания, степень усвоения материала учениками невысока.[9] При подготовке к экзаменам в 9 классе, а также подготовке к единому государственному экзамену в 11 классе, очень ярко видны проблемы изучения геометрии в школе. Окончив девять классов и изучив планиметрию, ученик должен, казалось бы, решать любую задачу в данном курсе. Однако учащиеся не только не умеют решать задачи, но даже боятся за них браться, т.к. на экзаменах по математике задачи по геометрии являются самым сложным заданием.

Таким образом, в настоящее время вопрос о рациональном построении процесса обучения с более глубоким изучением геометрии в курсе математики основной школы стоит наиболее остро.

Немаловажное значение в современном образовании стало отводиться современным средствам обучения и компьютерным технологиям. Применение компьютерных программных средств на уроках математики позволяет учителю не только разнообразить традиционные формы обучения, но и решать самые разные задачи:

  • за­метно повысить наглядность обучения, обеспе­чить его дифференциацию;

  • облегчить контроль знаний учащихся;

  • повысить интерес к предмету и познавательную активность школьников и т.д.

С помощью компьютера можно организовать про­цесс обучения по индивидуальной программе (ученик может сам выбрать наиболее приемлемую для себя скорость подачи и усвоения материала), что способствует эффективному психологическо­му развитию и возникновению у школьника про­фессиональных интересов, повышает уровень са­мообразования и расширяет возможности для творчества.

Компьютер способен реализовать многие пре­имущества технических средств обучения.

Совре­менные компьютерные программы позволяют со­здавать тексты, различные виды графики, муль­типликацию со звуковым сопровождением, видеоизображения. С их помощью можно модели­ровать исследуемые объекты и проводить экспе­рименты по изучению их свойств, имитировать процессы и явления и т.д.

Кроме того, применение компьютерных технологий способствует созданию на уроке положительного эмоционального фронта. Можно утверждать, что оно дало что-то ученику, если тот издает довольные звуки, гордо показывая свои творения товарищам или участвуя в «мультипликационных» объяснениях учителя; если его трудно отправить на перемену.[16]

Гипотеза: при целенаправленном и грамотном использовании методик и современных ТСО, в том числе электронных презентаций, развивается интерес к изучению рассматриваемой темы и более глубокому и качественному усвоению материала.

Объект исследования: организация учебно-воспитательного процесса в период изучения темы «Многоугольники. Площади многоугольников».

Предмет исследования: обучение учащихся основной школы приемам нахождения площади многоугольников.

Цель: определить эффективную систему мер, способствующих усвоению данной темы.

Задачи:

а) изучить научную и педагогическую литературу по данному вопросу;

б) изучить опыт работы учителей по данной теме;

в) провести сравнительный анализ методик преподавания темы по двум учебным пособиям;

г) разработать электронную презентацию по изучению площадей многоугольников.

При исследовании применялись следующие методы:

  • Классификация

  • Обобщение

  • Теоретический анализ и синтез

  • Сравнение

  • Аналогия

Глава I «Многоугольник. Понятие площади многоугольника в высшей школе»



Загрузить файл

Похожие страницы:

  1. Площади многоугольников

    Дипломная работа >> Математика
    ... школьного курса математики, а площадь многоугольника определяется с помощью указания её свойств: 1) численное значение площади любого многоугольника всегда положительно; 2) площади ...
  2. Методика изучения геометрических величин в курсе геометрии средней школы

    Курсовая работа >> Педагогика
    ... сочетанием теоретического и современных прикладных аспектов школьного курса математики. Этому способствует и тот факт, что ... дуги) или составлены из многоугольников (площадь круга) или многогранников (площади боковой поверхности и объемы ...
  3. Измерение геометрических величин в курсе средней школы

    Реферат >> Педагогика
    ... «Площади фигур» используется традиционно-синтетический и аналитический методы. 1. Образовательные цели изучения темы в школьном курсе математики ...
  4. Развитие функциональной линии в курсе алгебры 7 9 классов на примере учебников по алгебре под ред

    Дипломная работа >> Педагогика
    ... представляет большую ценность для школьного курса математики. Русский математик и педагог А. Я. Хинчин указывал ... диагональю со всеми остальными вершинами многоугольника, кроме двух соседних, т.е. с ... стороны прямоугольника заданной площади от длины другой ...
  5. Решение вопросов теории вероятности на уроках математики

    Дипломная работа >> Педагогика
    ... представление (многоугольник распределений), ... площади этой части. Если площадь круга составляет n единиц площади, а площадь треугольника m единиц площади ... линия в базовом школьном курсе математики [Текст] / Е.А. Бунимович// Математика в школе.– 2002 ...

Хочу больше похожих работ...

Generated in 0.0019340515136719