Поиск
Рекомендуем ознакомиться
Главная > Дипломная работа >Педагогика
2.3 Обучение решению задач. Уровни сформированности умений младших школьников решать задачи. Критерии уровней
Обучение решению задач – это специально организованное взаимодействие учителя и учащихся, цель которого – формирование у учащихся умения решать задачи.
Чтобы выявить характер и условия такого взаимодействия, нужно разобраться в том, что значит умение решать задачи.
Любое умение – это качество человека, а именно: его готовность и возможность успешно осуществлять определенные действия. В методической литературе принято выделять два основных типа умения решать задачи:
– общее умение решать задачи;
– умение решать задачи определенного вида (частное умение решать задачи).
Чтобы успешно формировать эти умения, нужно знать, в чем и как они проявляются, каковы их структура и операциональный состав, какие компоненты являются вариативными, изменяемыми, а какие – инвариатными, неизменяемыми.
Общее умение решать задачи проявляется при решении человеком (испытуемым) незнакомой задачи, т.е. задачи такого вида, способ решения которой неизвестен решающему.
При формировании общего умения решать задачи предметом изучения и основным содержанием обучения процессу решения задач являются методы и способы решения задач, приемы, помогающие осуществлению каждого этапа и всего процесса решения в целом.
Условно общее умение решать текстовые задачи представлено на рисунке №6.
Умение решать задачи определенных видов состоит из:
– знаний о видах задач, способов решения задач каждого вида;
– умения «узнать» задачу данного вида, выбрать соответствующий ей способ решения и реализовать его на «узнанной» задаче. Обучение умению решать задачи определенного вида включает в себя усвоение детьми сведений о видах задач, способов решения задач каждого вида (данного вида) и выработку умения выделять задачи соответствующих видов, выбирать способы решения, адекватные виду задачи, применять эти способы к решению конкретных задач.
Рис. №6 Структура общего умения решать текстовые задачи
При формировании у школьников умения решать задачи определенных видов предметом изучения и основным содержанием обучения являются виды задач, способы и образцы решения задач конкретных видов. Это является одной из наиболее сложных методических проблем, с которыми сталкивается учитель при обучении детей. И это естественно, так как решение задач вообще и математических в частности, по своей сути – процесс творческий, требующий продуктивной деятельности.
Условно структура умения решать задачи определенных видов изображено на рисунке №7.
Если рассматривать формирование умения решать задачи с точки зрения требований, предъявляемых школой, то достаточно научиться решать набор так называемых стандартных задач, используя многократное повторение задач каждого типа вплоть до выработки и запоминания образца решения.
В этом случае действительно можно говорить даже не о формировании умения, а об автоматизированном навыке решения задач, как это делает Л.Г. Петерсон в своем пособии для учителей первых классов.
Рисунок №7. Структура умения решать задачи определенных видов
Методы обучения решению задач «вырастают» из знаний о задаче и процессе их решения. Нельзя подменять эти понятия, но и нельзя осмысленно обучать решению задач, не упорядочив знания о решении задач.
Термин «умение» имеет два значения:
1) Как первоначальный уровень овладения каким-либо простым действием. В этом случае навык рассматривается как высший уровень овладения этим действием, автоматизированное его выполнение: умение переходит в навык.
2) Как способность осознанно выполнять сложное действие с помощью ряда навыков. В этом случае навык – это автоматизированное выполнение элементарных действий, из которых состоит сложное действие, выполняемое с помощью умения.
Диагностичными показателями владения умениями обычно являются конкретные действия и их комплексы, выполняемые относительно конкретно поставленных задач в контексте обучения. Вместе с тем, в структуре любого действия можно выделить общие элементы, реализация которых необходима при воспроизведении каждого конкретного умения. Владение этими элементами может служить объективными показателями сформированности умения:
построение алгоритма (последовательности) операций выполнения конкретных действий в структуре умения;
моделирование (планирование) практического выполнения действий, составляющих данное умение;
выполнение комплекса действий, составляющих данное умение;
самоанализ результатов выполнения действий, составляющих умение в сопоставлении с целью деятельности.
При определении уровня сформированности умений и навыков младших школьников по математике обычно учитывают сформированность их устных и письменных вычислительных навыков, сформированность умения решать задачи, ориентироваться в геометрических понятиях.
Применительно к решению текстовых задач в отечественной начальной школе используется следующая шкала уровней.
Высокому уровню сформированности умения решать задачи соответствуют работы и ответы, в которых ученик может самостоятельно и безошибочно решить задачу (составить план, решить, объяснить ход решения и точно сформулировать ответ на вопрос задачи).
Среднему уровню сформированности умения решать задачи соответствуют работы и ответы, в которых ученик допускает отдельные неточности в формулировках, допускает ошибки в вычислениях и решениях задач, но исправляет их сам или с помощью учителя. При этом в работах не должно быть более одной грубой и трех-четырех негрубых ошибок.
Низкому уровню сформированности умения решать задачи соответствуют работы и ответы, в которых ученик не справляется с решением задач и вычислениями в них даже с помощью учителя. Допускает 2 и более грубых ошибки.
2.4 Методические приемы, используемые в обучении решению текстовых задач в начальной школе
Чтобы научить ребенка работе над текстовой задачей, учитель может использовать различные приемы обучения, соответствующие совершенствованию логического мышления и творческих способностей детей.
Выше (см. пункты 2.2, 2.3) были описаны традиционно используемые приемы работы над текстовой задачей. Рассмотрим еще несколько конкретных примеров работы над задачей [12, 41].
Прием, основанный на предложенных объектах, сюжете, вспомогательной модели (приложение №1). Данный прием рассчитан на учащихся второго-третьего классов.
На доске заранее вывешиваются карточки с объектами «овощи», «свекла», «морковь», «картофель», а также вспомогательная модель задачи.
Учитель дает учащимся следующие команды:
– Выберите слова, характеризующие сюжет задачи. (Школьники вырастили овощи.)
– Где выращивают школьники овощи? (На пришкольном участке).
– Какое слово из предложенных объектов, записанных в столбце, общее? (Овощи.)
– Соотнесите предложенные объекты со схемой, указав количественные характеристики. (Целое – овощи. Количество овощей неизвестно. Части: свекла – 20 кг, морковь – 12 кг, картофель – 8 кг).
– Сформулируйте текст задачи. (Школьники вырастили на пришкольном участке 20 кг свеклы, 12 кг моркови и 8 кг картофеля. Сколько килограммов овощей вырастили школьники?)
– О какой величине говорится в задаче? (О массе.)
– Как иначе можно сформулировать требование? (Какова масса собранного урожая?)
Далее учитель предлагает ученикам самостоятельно решить эту задачу в рабочих тетрадях.
20 + 12 + 8 = 40 (кг)
Ответ: 40 кг урожая собрали школьники.
Затем совместно с учителем дети проверяют правильность решения предложенной задачи. В качестве способа проверки могут выступать сравнение своего решения с выполненным на закрытой части доски, чтение решения вслух Прием составления задачи по предложенной программе действий. Данный прием развивает коммуникативные способности ребенка, способность неординарно мыслить, и рассчитан на учащихся не младше второго класса. На доске вывешиваются схемы (см. рисунок №8). Учитель предлагает учащимся составить по данной схеме задачу, а затем решить ее.
Дети составляют задачу: «Миша решил 3 уравнения и 7 примеров. На сколько больше примеров, чем уравнений, решил Миша? На сколько меньше уравнений, чем примеров, решил Миша?»
Решение:
7 – 3 = 4 (шт.)
Ответ: на 4 примера больше, чем уравнений, решил Миша.
Учитель спрашивает одного из учеников, как решить эту задачу и что в итоге получится. Остальные дети делают проверку.
Рис. №8 Схема для составления текстовой задачи
Алогичная работа проводится со следующей схемой (см. рисунок №9).
Рис. №9 Схема для составления текстовой задачи
«Миша нарисовал 2 рисунка, а Маша 4. Сколько всего рисунков нарисовали дети? На сколько рисунков больше нарисовала Маша, чем Миша?»
Решение:
2 + 4 = 6 (шт.) – нарисовали вместе.
4 – 2 = 2 (шт.) – Маша нарисовала больше Миши.
Ответ: 6 рисунков, на 2 рисунка.
Прием составления задачи на основе нескольких задач, содержащих один сюжет и часть общих объектов с их количественными характеристиками.
Цель данного приема состоит в том, чтобы учить школьников выделять основные структурные компоненты задачи (условие и требование). Подобрав специальным образом численные данные, учитель может использовать этот прием в любом классе начальной школы.
Задача 1. В школьную библиотеку привезли новые учебники. В первый день библиотекари расставили 210 учебников по русскому языку, во второй – 135 учебников по математике. Сколько учебников расставили библиотекари по полкам за два дня?
Задача 2. В школьную библиотеку привезли учебники. В первый день библиотекари расставили по полкам 210 учебников по русскому языку, во второй – 63 учебника по чтению. Сколько учебников расставили библиотекари по полкам за два дня?
Задача 3. В школьную библиотеку привезли учебники. В первый день библиотекари расставили по полкам 97 учебников по английскому языку, во второй – 63 учебника по чтению. Сколько расставили библиотекари по полкам за два дня?
Учитель дает следующие команды детям:
– Прочитайте задачи.
– Что общего в данных задачах? (Сюжет, требование).
– Что можно сказать об объектах и количественных характеристиках задач? (Часть объектов и их количественные характеристики в первой и второй задачах, а также во второй и третьей задачах одинаковые).
– Сформулируйте текст одной задачи, используя все объекты и их количественные характеристики. (В школьную библиотеку привезли новые учебники. Из них в первый день расставили по полкам 210 учебников по русскому языку и 97 по английскому языку, во второй – 135 учебников по математике и 63 учебника по чтению. Сколько учебников расставили библиотекари по полкам за два дня?)
Похожие страницы:
Развитие самоконтроля на уроках математики в начальных классах
Реферат >> Педагогика... Бологова Е.И. Формирование самоконтроля в процессе обучения младших школьников решению текстовых задач// Нач. школа. – 2000 ... Курсовая работа по методике преподавания математики Формирование самоконтроля на уроках математики в начальных классах Выполнила: ...Использование проблемных ситуаций на уроках математики в развитии творческого мышления младших школьников (2)
Курсовая работа >> Педагогика... реализуется на практике, и в частности, на уроках математики в начальной школе, я рассмотрю в следующем пункте моей курсовой работы. 2.3 ... собственной мысли учащихся. Упражнения в решении составных текстовых задач, в сравнении выражений, требующие ...Решение логических задач на уроках математики в 5-6-х классах
Дипломная работа >> Педагогика... Кафедра алгебры и геометрии Дипломная работа По теме: «Решение логических задач на уроках математики в 5-6-х классах» Студентки 5 курса д/о ... количество текстовых задач, большинство из которых задано в шутливой форме. Есть и логические задачи, решаемые ...Решение геометрических задач на нахождение максимумов и минимумов аналитическими методами
Реферат >> Педагогика... математики МАКСИМЕЙКО ЮЛИЯ ВЛАДИМИРОВНА Решение геометрических задач на нахождение максимумов и минимумов аналитическими методами ДИПЛОМНАЯ РАБОТА ...Метод моделирования развития психической деятельности при решении учебных и игровых задач
Контрольная работа >> Психология... текстовые задачи на уроках математики в начальных классах ... вопросительной форме ( ... задачах, которой они овладевают в процессе их решения в I—II классах ... задачи. Таким образом, планируя на уроке решение /составных задач, следует творчески использовать в работе ...