Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

Педагогика->Реферат
Мышление есть высшая форма отражения окружающей действительности. Мышление - есть обобщенное и опосредствованное словом познание действительности. Мыш...полностью>>
Педагогика->Реферат
В центре внимания большинства дискуссий о состоянии духовной сферы современного российского общества находится семья как институт первичной социализац...полностью>>
Педагогика->Курсовая работа
В настоящее время актуализируются на международном, федеральном и региональных уровнях вопросы воспитания экологической культуры в системе образования...полностью>>
Педагогика->Реферат
Дошкольное образовательное учреждение – первое и самое ответственное звено в общей системе образования. Обладая высокой пластичностью функций мозга и ...полностью>>

Главная > Дипломная работа >Педагогика

Сохрани ссылку в одной из сетей:

3.–Работа–по–выполнению–учебного–задания.

4. Наблюдение учителя и корректировка работы группы и отдельных учащихся.

5. Взаимная проверка и контроль над выполнением задания в группе.

6. Сообщение учащихся по вызову учителя о полученных результатах, общая дискуссия в классе под руководством учителя, дополнение и исправление, дополнительная информация учителя и формулировка окончательных выводов.

7. Индивидуальная оценка работы групп и класса в целом [34].

Схематически взаимодействие учителя и групп школьников представлено на рисунке №4.

Рис.4 Взаимодействие учителя и учащихся при групповой форме организации учебной деятельности класса

Успех групповой работы учащихся зависит, прежде всего, от мастерства учителя, от его умения распределять свое внимание таким образом, чтобы каждая группа, и каждый ее участник в отдельности, ощущали заботу учителя, его заинтересованность в их успехе, в нормальных плодотворных межличностных отношениях. Всем своим поведением учитель обязан выражать заинтересованность в успехе как сильных, так и слабых учащихся, вселять им уверенность в успехах, проявлять уважительное отношение к–слабым–ученикам.

Достоинства групповой организации учебной работы учащихся на уроке очевидны. Результаты совместной работы учащихся весьма ощутимы как в приучении их к коллективным методам работы, так и в формировании положительных нравственных качеств личности. Но это не говорит о том, что групповая форма организации учебной работы может быть признана идеальной, универсальной. Ею нельзя ограничивать разнообразие форм работы учащихся в классе, ее нельзя противопоставлять другим формам.

Групповая форма несет в себе и ряд недостатков. Среди них наиболее существенными являются: трудности комплектования групп и организации работы в них; учащиеся в группах не всегда в состоянии самостоятельно разобраться в сложном учебном материале и избрать самый экономный путь его изучения. В результате, слабые ученики с трудом усваивают материал, а сильные нуждаются в более трудных, оригинальных заданиях, задачах.

Только в сочетании с другими формами обучения школьников на уроке — фронтальной и индивидуальной — групповая форма организации работы учащихся приносит ожидаемые положительные результаты.

Сочетание этих форм, выбор наиболее оптимальных вариантов этого сочетания определяется учителем в зависимости от решаемых учебно-воспитательных задач на уроке, от учебного предмета, специфики содержания, его объема и сложности, от специфики класса и отдельных учеников, уровня их учебных возможностей и, конечно, от стиля отношений учителя и учащихся, отношений учащихся между собой, от той доверительной атмосферы, которая установилась в классе, от постоянной готовности оказывать друг другу помощь.

Необходимо подчеркнуть, что характеристика известных форм организации деятельности учащихся вполне применима к урокам математики в начальной школе. На основе изучения методической литературы нами установлено, что передовой педагогический опыт современных учителей основан на поиске оптимального сочетания форм организации деятельности школьников на уроках.

Фронтальная, групповая и индивидуальная формы работы учащихся по-разному способствуют реализации образовательных, воспитательных и развивающих задач. Поэтому необходимо рациональное их сочетание, продуманный выбор той или иной формы с учетом особенностей учебного предмета, содержания изучаемого материала, методов обучения, возрастных особенностей учащихся.

Глава 2. Текстовые задачи в начальном курсе математики

В настоящей главе раскрывается сущность понятия «текстовая задача», описывается ее структура, приводится классификация задач по разным основаниям, дается характеристика этапам обучения решать текстовые задачи. Также рассмотрены примеры дифференцирования задач по уровню их сложности.

2.1 Понятие «текстовая задача» и ее структура

С термином «задача» люди постоянно сталкиваются в повседневной жизни, как на бытовом, так и на профессиональном уровне. Каждому из нас приходится решать те или иные проблемы, которые зачастую мы называем задачами. Это могут быть общегосударственные задачи (освоение космоса, воспитание подрастающего поколения, оборона страны и т.п.), задачи определенных коллективов и групп (сооружение объектов, выпуск литературы, установление связей и зависимостей и др.), а также задачи, которые стоят перед отдельными личностями.

К решению разноплановых жизненных задач школьников начинают готовить уже в младшем школьном возрасте в процессе обучения математике.

Решая задачи, учащиеся приобретают новые или закрепляют, углубляют и систематизируют уже имеющиеся математические знания. Обучающая функция текстовых задач может быть продемонстрирована задачами, в которых

  • раскрывается конкретный смысл арифметических действий,

  • вводятся рациональные приемы вычислений и соответствующие им правила,

  • выполняются табличные или внетабличные вычисления,

  • используются соотношения между различными единицами измерения величин и т.д.

Более того, существующие межпредметные связи начального курса математики с другими учебными дисциплинами позволяют отработать умение читать, повторить грамматические нормы (правописание словарных слов, применение изучаемых правил орфографии, правил сокращения слов и т.д.).

Задачи выполняют развивающую функцию по отношению к учащимся младших классов. В процессе решения текстовых задач отрабатываются умения

  • выполнять операции анализа и синтеза, абстрагирования и конкретизации,

  • проводить рассуждения по аналогии,

  • обобщать способы решения типовых задач

  • находить признаки абстрактных математических понятий в реальных объектах и, следовательно, устанавливать связь теоретических знаний в области математики с жизнью.

Большое значение имеет решение задач и в воспитании личности учащихся:

  • прививается культура мышления, общения и выражения собственных мыслей,

  • вырабатывается умение слушать мнение учителя и одноклассников, анализировать и оценивать услышанное,

  • вырабатывается аккуратность в ведении записей,

  • расширяется кругозор,

  • воспитывается чувство коллективизма среди школьников и т.д.

Поэтому важно, чтобы учитель имел глубокие представления о текстовой задаче, о её структуре, умел решать такие задачи различными способами и передавал эти знания своим ученикам.

Проблема решения и чисто математических задач, и задач, возникающих перед человеком в процессе его производственной или бытовой деятельности, изучается издавна. Однако до настоящего времени нет общепринятой трактовки самого понятия «задача». В широком смысле слова под задачей понимается некоторая ситуация, требующая исследования и разрешения человеком (или решающей системой).

Отдельно стоят математические задачи, решение которых достигается специальными математическими средствами и методами. Среди них выделяют задачи научные (например, теорема Ферма, проблема Гольбаха и др.), решение которых способствует развитию математики и ее приложений, и задачи учебные, которые служат для формирования необходимых математических знаний, умений и навыков у разных групп обучаемых (школьников, слушателей курсов, студентов и др.) и направлены на изменение качеств личности обучаемого (не знал — знаю, не умел — умею и т.п.).

Положив в основание классификации число действий, которые необходимо выполнить для решения задачи, выделяют простые и составные задачи. Задачу, для решения которой нужно выполнить одно арифметическое действие, называют простой. Задачу, для решения которой нужно выполнить два или большее число действий, называют составной.

Учебные математические задачи различаются по характеру их объектов. В одних задачах все объекты математические (числа, геометрические фигуры, функции и т.п..), в других объектами являются реальные объекты (люди, животные, автотранспортные и механические средства, сплавы, жидкости и т.д.) или их свойства и характеристики (количество, возраст, скорость, производительность, длина, масса и т.п.). Задачи, все объекты которых математические (доказательства теорем, вычислительные упражнения, установление признаков изучаемого математического понятия и т.д.), часто называют математическими заданиями.

Математические задачи, в которых есть хотя бы один объект, являющийся реальным предметом, принято называть текстовыми (сюжетными, практическими, арифметическими и т.д.). Перечисленные названия берут начало от способа записи (задача представлена в виде текста), сюжета (описываются реальные объекты, явления, события), характера математических выкладок (устанавливаются количественные отношения между значениями некоторых величин, связанные чаще всего с вычислениями). В последнее время наиболее распространенным является термин «текстовая задача».

Классификация задач по различным основаниям приведена в таблице №1.

Таблица №1. Классификации задач по различным основаниям

Основание

классификации

Виды задач

Видовая характеристика

1.

Цели

решения задач

научные

способствовать развитию математики и ее приложений, науки в целом

учебные

формирование математических знаний, умений и навыков у обучаемых

2.

Характер

объектов

математические задания

все объекты математические

текстовые

хотя бы один объект является реальным предметом или явлением

3.

Количество

данных

с избыточными данными

содержат информацию, которая не нужна для выполнения требования задачи

с недостающими данными

содержат недостаточно информации для выполнения требования задачи

4.

Уровень

сложности

типовые

решение задачи состоит в стереотипном воспроизведении заученных действий

творческо-воспроизводящие

решение задачи требует некоторой модификации заученных действий в изменившихся условиях

творческие,

эвристические

решение задачи требует поиска

новых, еще неизвестных способов действий

5.

Количество

выполняемых при решении действий

простые

для решения задачи требуется

выполнить одно действие

составные

для решения задачи требуется выполнить более одного действия

Текстовая задача – описание некоторой ситуации на естественном языке с требованием дать количественную характеристику какого-либо компонента этой ситуации, установить наличие или отсутствие некоторого отношения между её компонентами или определить вид этого отношения [29].

Придерживаясь современной терминологии, можно сказать, что текстовая задача представляет собой словесную модель ситуации, явления, события, процесса и т.п. Как в любой модели, в текстовой задаче описывается не все событие или явление, а лишь его количественные и функциональные характеристики [8].

Математическая задача – это связанный лаконический рассказ, в котором введены значения некоторых величин и предлагается отыскать другие неизвестные значения величин, зависимые от данных и связанные с ними определенными соотношениями, указанными в условии [8].

Любая текстовая задача состоит из двух частей: условия и требования (вопроса). Числовые значения величин и существующие между ними зависимости, т.е. количественные и качественные характеристики объектов задачи и отношений между ними, называют условием (или условиями) задачи. В условии сообщаются сведения об объектах и некоторых величинах, характеризующих данные объекты, об известных и неизвестных значениях этих величин, об отношениях между ними. В задаче обычно не одно, а несколько условий, которые называют элементарными.



Загрузить файл

Похожие страницы:

  1. Развитие самоконтроля на уроках математики в начальных классах

    Реферат >> Педагогика
    ... Бологова Е.И. Формирование самоконтроля в процессе обучения младших школьников решению текстовых задач// Нач. школа. – 2000 ... Курсовая работа по методике преподавания математики Формирование самоконтроля на уроках математики в начальных классах Выполнила: ...
  2. Использование проблемных ситуаций на уроках математики в развитии творческого мышления младших школьников (2)

    Курсовая работа >> Педагогика
    ... реализуется на практике, и в частности, на уроках математики в начальной школе, я рассмотрю в следующем пункте моей курсовой работы. 2.3 ... собственной мысли учащихся. Упражнения в решении составных текстовых задач, в сравнении выражений, требующие ...
  3. Решение логических задач на уроках математики в 5-6-х классах

    Дипломная работа >> Педагогика
    ... Кафедра алгебры и геометрии Дипломная работа По теме: «Решение логических задач на уроках математики в 5-6-х классах» Студентки 5 курса д/о ... количество текстовых задач, большинство из которых задано в шутливой форме. Есть и логические задачи, решаемые ...
  4. Решение геометрических задач на нахождение максимумов и минимумов аналитическими методами

    Реферат >> Педагогика
    ... математики МАКСИМЕЙКО ЮЛИЯ ВЛАДИМИРОВНА Решение геометрических задач на нахождение максимумов и минимумов аналитическими методами ДИПЛОМНАЯ РАБОТА ...
  5. Метод моделирования развития психической деятельности при решении учебных и игровых задач

    Контрольная работа >> Психология
    ... текстовые задачи на уроках математики в начальных классах ... вопросительной форме ( ... задачах, которой они овладевают в процессе их решения в I—II классах ... задачи. Таким образом, планируя на уроке решение /составных задач, следует творчески использо­вать в работе ...

Хочу больше похожих работ...

Generated in 0.0073540210723877