Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

Физика->Контрольная работа
1 Определить длительно допустимую величину плотности переменного тока для бескаркасной цилиндрической катушки индуктивности, намотанной медным проводо...полностью>>
Физика->Курсовая работа
Газоснабжение – это сложный комплекс технических устройств по добыче естественного или производству искусственного горючего газа, хранению, передаче и...полностью>>
Физика->Реферат
Представим себе закрытый металлический сосуд (котел), частично заполненный водой Если под ним зажечь огонь, то вода начнет нагреваться, а затем закипи...полностью>>
Физика->Контрольная работа
К пассивным относятся электроизоляционные, конструктивные и конденсаторные диэлектрические материалы, органические полимерные диэлектрики, композицион...полностью>>

Главная > Реферат >Физика

Сохрани ссылку в одной из сетей:

Содержание.

Введение…………………………………………………………………3

  1. Основные даты……………………………………………………...5

  2. Получение лазерного луча………………………………………..7

  3. Лазерная технология……………………………………………….10

  4. Принцип действия лазеров……………………………………….11

  5. Основные свойства лазерного луча……………………………..12

  6. Применение лазеров………………………………………………..16

  7. Характеристики некоторых типов лазеров…………………….23

Заключение………………………………………………………………31

Список использованной литературы………………………………..33

Введение.

Одним из самых замечательных достижений физики второй половины двадцатого века было открытие физических явлений, послуживших основой для создания удивительного прибора - оптического квантового генератора, или лазера. Габариты лазеров разнятся от микроскопических для ряда полупроводниковых лазеров до размеров футбольного поля для некоторых лазеров на неодимовом стекле. Уникальные свойства излучения лазеров позволили использовать их в различных отраслях науки и техники, а также в быту, начиная с чтения и записи компакт-дисков и заканчивая исследованиями в области управляемого термоядерного синтеза.

Так, что же такое лазер? Лазер представляет собой источник монохроматического когерентного света с высокой направленностью светового луча. Само слово “лазер” составлено из первых букв английского словосочетания, означающего ”усиление света в результате вынужденного излучения”.   Оптический квантовый генератор — устройство, преобразующее энергию накачки (световую, электрическую, тепловую, химическую и др.) в энергию когерентного, монохроматического, поляризованного и узконаправленного потока излучения.

Чтобы создать лазер или оптический квантовый генератор – источник когерентного света необходимо:

1)      рабочее вещество с инверсной населенностью. Только тогда можно получить усиление света за счет вынужденных переходов.

2)      рабочее вещество следует поместить между зеркалами, которые осуществляют обратную связь.

3)      усиление, даваемое рабочим веществом, а значит, число возбужденных атомов или молекул в рабочем веществе должно быть больше порогового значения, зависящего от коэффициента отражения полупрозрачного зеркала.

 Физической основой работы лазера служит квантовомеханическое явление вынужденного индуцированного излучения. Оно происходит при взаимодействии фотона с возбужденным атомом при точном совпадении энергии фотона с энергией возбуждения атома (или молекулы). Излучение лазера может быть непрерывным, с постоянной мощностью, или импульсным, достигающим экстремально больших пиковых мощностей.

В результате этого взаимодействия атом переходит в невозбужденное состояние, а избыток энергии излучается в виде нового фотона с точно такой же энергией, направлением распространения и поляризацией, как и у первичного фотона. Таким образом, следствием данного процесса является наличие уже двух абсолютно  идентичных  фотонов. При  дальнейшем взаимодействии этих фотонов с возбужденными атомами, аналогичными первому атому, может возникнуть цепная реакция размножения одинаковых фотонов, летящих абсолютно точно в одном направлении, что приведет к появлению узконаправленного светового луча. Для возникновения лавины идентичных фотонов необходима среда, в которой  возбужденных атомов было бы больше, чем невозбужденных, поскольку при взаимодействии фотонов с невозбужденными атомами происходило бы поглощение фотонов. Такая среда называется средой с инверсной населенностью уровней энергии.                                                

Итак, кроме вынужденного испускания фотонов возбужденными атомами происходят также  процесс самопроизвольного, спонтанного  испускания фотонов при переходе возбужденными атомами в невозбужденное состояние и процесс поглощения фотонов при переходе атомов из невозбужденного состояния в возбужденное. Эти три процесса, сопровождающие переходы атомов в возбужденные состояния и обратно, были постулированы А. Эйнштейном в 1916 г.

  1. Основные даты.

1916 год: А. Эйнштейн предсказывает существование явления вынужденного излучения — физической основы работы любого лазера. Если число возбужденных атомов велико и существует инверсная выделенность уровней (в верхнем, возбужденном состоянии атомов больше, чем в нижнем, невозбужденном), то первый же фотон, родившийся в результате спонтанного излучения, вызовет всенарастающую лавину появления идентичных фотонов. Произойдет усиление спонтанного излучения.        

1927-1930гг: Строгое теоретическое обоснование в рамках квантовой механики это явление получило в работах П. Дирака

1928 год: экспериментальное подтверждение Р. Ладенбургом и Г. Копферманном существования вынужденного излучения.

1940 год: советский физиком В. Фабрикантом и Ф. Бутаевой была предсказана возможность использования вынужденного излучения среды с инверсией населённостей для усиления электромагнитного излучения, с предложением создавать инверсную населенность в электрическом разряде в газе.          

1950 год: А. Кастлер (Нобелевская премия по физике 1966 года) предлагает метод оптической накачки среды для создания в ней инверсной населённости.

1952год: метод реализован на практике Бросселем, Кастлером и Винтером. До создания квантового генератора оставался один шаг: ввести в среду положительную обратную связь, то есть поместить эту среду в резонатор.

1954 год: первый микроволновой генератор — мазер на аммиаке (Ч. Таунс — Нобелевская премия по физике 1964 года, Дж. Гордон, Г. Цайгер). Роль обратной связи играл объёмный резонатор, размеры которого были порядка 12,6 мм (длина волны, излучаемой при переходе аммиака с возбуждённого колебательного уровня на основной). Весомый вклад в изучение принципов квантового усиления и генерации внесли также советские физики А. Прохоров и Н. Басов (Нобелевская премия по физике 1964 г.). Для усиления электромагнитного излучения оптического диапазона необходимо было создать объёмный резонатор, размеры которого были бы порядка микрона. Из-за связанных с этим технологических трудностей многие учёные в то время считали, что создать генератор видимого излучения невозможно.

1960 год: Т. Мейман продемонстрировал работу первого оптического квантового генератора — лазера. В качестве активной среды использовался рубин (оксид алюминия Al2O3 с небольшой примесью хрома Cr), а вместо объёмного резонатора был использован открытый оптический резонатор. Этот лазер работал в импульсном режиме, на длине волны в 694,3 нм. В декабре того же года был создан гелий-неоновый лазер, излучающий в непрерывном режиме (А. Джаван, У. Беннет, Д. Хэрриот). Изначально лазер работал в инфракрасном диапазоне, затем был модифицирован для излучения видимого красного света.

В последующие два года гелий-неоновый лазер был усовершенствован, а также были открыты другие газовые лазеры, работающие в инфракрасной области, включая лазеры с использованием других благородных газов и атомарного кислорода. Однако наибольший интерес к газовым лазерам был вызван открытием генерации гелий-неонового лазера на красной линии 6328 А при условиях, лишь незначительно отличавшихся от условий, при которых была получена генерация в первом газовом лазере. Получение генерации в видимой области спектра стимулировало интерес не только к поискам дополнительным переходов такого типа, но и к лазерным применениям, так как при этом были открыты многие новые и неожиданные явления, а лазерный луч получил новые применения в качестве лабораторного инструмента.

Два года, последовавшие за открытием генерации на линии 6328 А, были насыщены большим количеством технических усовершенствований, направленных главным образом на достижение большей мощности и большей компактности этого типа лазера. Тем временем продолжались поиски новых длин волн и были открыты многие инфракрасные и несколько новых переходов в видимой области спектра. Наиболее важным из них является открытие Матиасом импульсных лазерных переходов в молекулярном азоте и в окиси углерода.           

Физика лазеров и по сей день интенсивно развивается. С момента изобретения лазера почти каждый год появлялись всё новые его виды, приспособленные для различных целей.

В 1961 г. был создан лазер на неодимовом стекле, а в течение следующих пяти лет были разработаны лазерные диоды, лазеры на красителях, лазеры на двуокиси углерода, химические лазеры.

В 1963 г. Ж. Алфёров и Г. Кремер (Нобелевская премия по физике 2000 г.) разработали теорию полупроводниковых гетероструктур, на основе которых были созданы многие лазеры.

Следующим наиболее важным этапом в развитии лазеров было открытие Беллом в конце 1963 г. лазера, работающего на ионах ртути. Хотя лазер на ионах ртути сам по себе не оправдал первоначальных надежд на получение больших мощностей в непрерывном  режиме в красной и  зеленой областях  спектра, это открытие указало новые режимы разряда,  при которых могут быть обнаружены  лазерные переходы  в видимой области спектра. Поиски таких переходов были проведены также среди других ионов. Вскоре было обнаружено, что ионы аргона представляют собой наилучший источник лазерных переходов с большой мощностью в видимой области и что на них может быть получена генерация в непрерывном режиме. В результате дальнейших усовершенствований аргонового лазера в непрерывном режиме была получена наиболее  высокая мощность, какая только возможна в видимой области. В результате поисков была открыта генерация на 200 ионных переходах, сосредоточенных главным образом в видимой, а также в ультрафиолетовой частях спектра.



Похожие страницы:

  1. Лазеры и их применение (1)

    Курсовая работа >> Физика
    ... факультет Кафедра общей и экспериментальной физики ЛАЗЕРЫ И ИХ ПРИМЕНЕНИЕ Курсовая работа Благовещенск 2007 СОДЕРЖАНИЕ ... Данная курсовая работа посвящается изучению лазеров и их применения в различных сферах деятельности человека. Актуальность ...
  2. Лазеры и их применение в медицине (2)

    Реферат >> Биология
    ... зачатков задержавшихся зубов (изменения положения их в челюсти и установление в направлении прорезывания) и ускоряет ... низок. Весьма ценным эндоскопические вмешательства с применением лазера оказываются при микрохирургических операциях в барабанной ...
  3. Развитие полупроводниковых лазеров и их применение

    Реферат >> Физика
    ... 4. Основные свойства лазерного луча 5. Применение лазеров Практическое и промышленное применение лазера Лазеры в вычислительной технике Лазерный принтер ... электронно-дырочных пар протекает процесс их рекомбинации, сопровождающийся образованием кванта ...
  4. Лазеры. Строение и применение

    Реферат >> Физика
    ... их звенья. Роль лазеров в фундаментальных научных исследованиях исключительно велика. При обсуждении практических применения лазеров ... и их излучение нашли применение во многих отраслях промышленности. Так, например, в индустрии наблюдается применение лазеров ...
  5. Теория и практика применения лазерной спектроскопии (на примере анализа объектов окружающей среды)

    Контрольная работа >> Экология
    ... Введение 1. Лазерная спектроскопия 2. Виды лазеров и их применение 3. Современное оборудование 4. Применение лазерной спектроскопии в анализе объектов ...

Хочу больше похожих работ...

Generated in 0.0066149234771729