Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

Физика->Реферат
Свет – это электромагнитные волны с длиной волны 410-7-810-7 м. Электромагнитные волны излучаются при ускоренном движении заряженных частиц. Эти зар...полностью>>
Физика->Реферат
В кабельном производстве для изоляции жилы используется преимущественно сшитые материалы. Они обладают лучшими термомеханическими свойствами, в сравне...полностью>>
Физика->Реферат
Плавкий предохранитель состоит из двух основных частей: корпуса (патрона) из электроизоляционного материала и плавкой вставки. Концы плавкой вставки с...полностью>>
Физика->Реферат
1. Магнитный пускатель - электрический аппарат, предназначенныйдля дистанционного управления трехфазными асинхронными электродви-гателями с короткозам...полностью>>

Главная > Курсовая работа >Физика

Сохрани ссылку в одной из сетей:

Если бы мы удалили якорь на значительное расстояние в соответствии с рисунком 2.9, то утечка очень сильно возросла бы, поток сильно ослабел бы и, вследствие неопределенности величины утечки и сопротивления воздушных частей пути линий сил, всякий расчет сделался бы невозможным.

Отсюда видно, что расчет электромагнита на основании принципа магнитной цепи возможен лишь тогда, когда электромагнит с его якорем представляет почти замкнутую магнитную цепь, и результат применения правила магнитной цепи становится тем более сомнительным, чем больше сопротивление воздушных слоев сравнительно с сопротивлением железного пути.

Рисунок 2.9 – Отведение якоря на значительное расстояние

В наиболее важных на практике случаях (электромагниты у динамо-машин и двигателей, электромагниты в телеграфных приборах, часах и т.д.) мы имеем дело с почти замкнутыми магнитными цепями, и применением правила магнитной цепи возможно. Но и в этих случаях, если мы желаем достичь некоторой точности расчета, приходится на основании опытов или вычислений приблизительно определять, какой процент возникающих в соленоиде линий сил утекает, и принимать эти данные в соображение при расчете. Лишь в случае электромагнита, держащего приложенный к нему якорь в соответствии с рисунком 2.7, расчет по приведенному выше образцу дает достаточную для технических целей точность.

Пользуясь правилом магнитной цепи, необходимо иметь ввиду, что проницаемости сильно магнитных веществ не есть величина постоянная, но в сильной мере зависит от силы магнитного поля, в которое помещены эти вещества.

Поэтому применение закона магнитной цепи возможно лишь в том случае, если зависимость проницаемости от силы поля известна для всех веществ (железо, сталь, чугун), входящих в конструкцию данного электромагнита. Данные для различных веществ располагаются обыкновенно в таблицах или кривых, в которых дается зависимость между силой поля H и индукцией.

В этих же таблицах для облегчения расчета дается обыкновенно и число ампер-оборотов на 1 см пути данного материала при данной индукции. В качестве примера ниже приведены некоторые данные для лучшего мягкого железа, литой стали и чугуна.

Таблица 2.1 – Параметры для веществ

Железо мягкое

H

μ

B

A.-O. на 1 см

1,4

2760

4000

1,16

1,9

3160

6000

1,52

2,5

3200

8000

2,00

3,4

2940

10000

2,74

5,2

2310

12000

4,16

13,5

1040

14000

10,80

44,0

364

16000

36,20.

Сталь литая

2,3

1740

4000

1,84

3,1

1900

6000

2,52

4,0

2000

8000

3,20

5,3

1890

10000

4,24

8,4

1430

12000

6,72

15,4

910

14000

12,32

42,5

376

16000

34,00

Чугун

2,4

834

2000

1,92

3,5

857

3000

2,80

5,5

728

4000

4,40

9,9

505

5000

7,92

20,0

300

6000

16,00

42,0

167

7000

33,60

Если магнитная цепь электромагнита состоит из ряда частей, составленных из различных магнитных материалов, то правило магнитной цепи напишется в наиболее общем виде

Ф = 0,4 π NJ/ (L1/S1 μ 1 + L2/S2 μ 2 + L3/S3 μ 3 +…) (2.14)

где L1, L2, L3… – длины пути магнитного потока в этих частях;

S1, S2, S3… – сечения этих путей;

μ 1, μ 2, μ 3… – проницаемости данных материалов при данных индукциях B1 = Ф/S1, B2 = Ф/S2, B3 = Ф/S3… в них.

Полное число ампер-оборотов, необходимое для получения потока Ф, получится как сумма, необходимых для путей L1, L2, L3… при индукциях B1, B2, B3….

Если магнитная цепь разветвляется, как это часто имеет место в электромагнитах динамо-машин, то расчет ведется аналогично расчетам разветвлений электрического тока, так как, в виду полной аналогии между правилом магнитной цепи и законом Ома, все следствия из закона Ома (с надлежащими в каждом частном случае ограничениями) могут быть применяемы и к магнитной цепи.

Рисунок 2.10 – Электромагнит Дю-Буа

Катушки N и M создают поток, который замыкается через железные бока и основание рамы ОКО'; поле создается в пространстве с. Сердечники N и M просверлены и снабжены по концам никелевыми призмами а и b для наблюдений над магнитным вращением плоскости поляризации в веществах, помещенных в поле. H – коммутатор, посредством которого можно менять направление тока в обмотке электромагните и тем самым изменять направление потока и поля в пространстве с.

Электромагнит Румкорфа не отличается рациональностью конструкции, так как длинные и относительно тонкие железные части боков и основания его представляют сравнительно большое магнитное сопротивление. Значительно более совершенен электромагнит, сконструированный в недавнее время Дю-Буа в соответствии с рисунком 2.10; MM NN представляет обмотку; поле получается в а, между конически отточенными полюсными наконечниками; в СС сердечники просверлены для магнито-оптических наблюдений.

Изображенный электромагнит несет около 2500 оборотов проволоки и при 20 амперах дает поле в 35000 линий сил на кв. см на протяжении воздушного слоя в 1 мм длиной и около 30 кв. мм сечением. Посредством подобного электромагнита Дю-Буа достигал силы поля выше 40000 линий на кв. см. К этой же группе могут быть отнесены электромагниты, применяемые в электромагнитных тормозах, основанных на индукции токов в металлических массах, движущихся в магнитном поле.

Электромагниты для приставания, назначением которых является удерживать якорь, оттягиваемый грузом или пружиной в соприкосновении с полюсами до тех пор, пока по обмотке электромагнита проходит ток, и отпускать его, когда ток прекратится. Сюда относятся электромагниты, применяемые во многих электрических кранах и лебедках, электромагниты, применяемые для сцепления отдельных частей механизмов в желаемый момент (тормоза, механизмы для сцепления валов), а также электромагниты, применяемые во многих хронографах. Все эти электромагниты, представляя почти замкнутую магнитную цепь, легко поддаются расчету; для того, чтобы удерживательная их сила, рассчитанная по формуле (2.12), была возможно большой, необходимо по возможности уменьшать их магнитное сопротивление, конструируя их из толстых коротких железных частей в соответствии с рисунком 2.11.

Рисунок 2.11 – Конструкция электромагнитов, применяемых в кранах и лебедках

A – сердечник;

В-якорь;

СС – обмотка.

Опыт показал, что даже в лучшем железе практически трудно достичь индукции выше 14–16000 линий на кв. см; отсюда следует на основании формулы (2.12), что наибольший груз, который может держать 1 кв. см полюсной поверхности электромагнита, будет равняться в лучших условиях от 8 до 10 кГ.

Электромагниты для притяжения якоря на расстоянии находят наибольшее применением (телеграфы, звонки, прерыватели, электрические часы, реле, хронографы, телефоны и т.д.).

В виду большого сопротивления, представляемого воздушными слоями между полюсными наконечниками и якорем, величина магнитного сопротивления железной части цепи играет меньшую роль, и поэтому сердечники могут быть в случае надобности более тонкими и длинными. В виду большого общего магнитного сопротивления цепи индукция даже при значительном числе ампер-оборотов не может быть большой, и притягательная сила электромагнита на якорь всегда сравнительно незначительна.

Интересное видоизменение этого типа представляют поляризованные электромагниты (предложены Юзом в 1855 г.), в которых сердечники поддерживаются все время сильно намагниченными при помощи сильных стальных магнитов.

Такие электромагниты представляют две особенности:

а) Сила, с которой они притягивают якорь, зависит от направления тока в обмотке электромагнита; действительно, если магниты сердечника всегда обладают определенной индукцией B, то пропускание тока по обмотке в том направлении, которое усиливает эту индукцию, увеличит силу притяжения якоря; обратное направление тока ослабит притяжение. На этом свойстве поляризованных электромагнитов основано применение их в тех электромагнитных приборах, в которых направление движения якоря должно меняться с изменением направления тока, проходящего по обмотке электромагнита (электрические звонки для переменного тока).

б) Незначительная сила тока в обмотке электромагнита вызывает большее изменение притягательной силы, чем в обыкновенном электромагните Действительно, предположим, что сила тока в обмотке такова, что она может возбудить поле, H = 2,3; тогда в обыкновенном электромагните с сердечником из литой стали возникнет индукция 4000 и пропорциональная квадрату её или 16 сила притяжения. Если же сердечник был уже предварительно намагничен до В = 6000, то усиление его намагничевания при помощи поля H = 2,3 вызовет приблизительно индукцию около 10000; при пропускании тока сила притяжения, следовательно, увеличится от 6 2 = 36 до 10 2 = 100, т.е. на 100–36 = 64, что в 4 раза больше, чем в неполяризованном электромагните. В виду этого свойства поляризованные электромагниты применяются во всех тех случаях, когда ничтожный по силе ток должен вызвать заметное изменение в силе притяжения якоря (реле, телефоны).

Магниты для отделения сильно магнитных материалов от немагнитных веществ, к которым первые примешаны. Электромагниты этого рода находят теперь большое применение в обогащении железных руд; измельченная железная руда бежит струёй мимо электромагнита, который втягивает в свое поле все сильно магнитные части руды, содержащие железо, и пропускает мимо несодержащие железо минеральные составные части руды. Сюда же можно отнести электромагниты, применяемые в медицине для извлечения из различных частей тела (в особенности, глаз) врезавшихся в них железных частичек.

Электромагниты с подвижным сердечником, в которых при пропускании тока через обмотку соленоида подвижной железный сердечник втягивается в соленоид. Подобные электромагниты применяются во многих измерительных и регулирующих инструментах и в регуляторах дуговых ламп.

Придавая сердечнику соответственную форму, стараются достичь того, чтобы сила втяжения сердечника на значительном протяжении его пути была по возможности одинакова.



Загрузить файл

Похожие страницы:

  1. Совершенствование технологии контроля автосцепочного устройства на базе пассажирского вагонного депо Ростов

    Дипломная работа >> Транспорт
    ... При контроле автосцепного устройства применяется магнитопоршковый метод контроля. Магнитопорошковый метод неразрушающего контроля основан ... 275х520х320 мм); намагничивающее устройство( масса 9 ... Для дальнейших расчетов примем Д=0,3 м. Определим ПДВ для ...
  2. Проектирование организации средств контроля в процессе производства детали валок правильный

    Курсовая работа >> Промышленность, производство
    ... . При магнитопорошковом методе контроля предусматривается следующая последовательность операций: - подготовка изделия к контролю. Изделия, подаваемые на намагничивающие устройства ...
  3. Контроль качества материалов и сварных соединений

    Книга >> Промышленность, производство
    ... Для контроля сварных соединений применяются в основном магнитопорошковый и магнитографический методы. Сущность магнитопорошкового метода ... Для намагничивания при порошковой и магнитографической дефектоскопии применяются специальные намагничивающие устройства ...
  4. Организация ремонта колесных пар со сменой элементов в колесно-прессовом участке грузового вагонного депо

    Дипломная работа >> Транспорт
    ... . Для размагничивания оси намагничивающее устройство в ... Расчет потребного оборудования, средств механизации, автоматизации и подъемно – транспортных устройств. Для ... 32.159-2000. «Магнитопорошковый метод неразрушающего контроля деталей вагонов» М.: Транспорт ...
  5. Проект пассажирского вагонного депо с разработкой контрольного пункта автосцепки

    Дипломная работа >> Транспорт
    ... , диагностируют на столе . Неразрушающий контроль хомутов, проводят феррозондовым методом, оборудование для которого находятся на ... 3 мм (б). Намагничивающие устройства. Намагничивающая система МСН 11-01 на постоянных магнитах предназначена для намагничивания ...

Хочу больше похожих работ...

Generated in 0.0019290447235107