Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

Математика->Реферат
Свойство 4 особенно важно на практике, т.к. оно фактически означает, что предел отношения бесконечно малых не меняется при замене их на эквивалентные ...полностью>>
Математика->Курсовая работа
Автор работы подтверждает, что приведенный в ней материал правильно и объективно отражает состояние исследуемого метода, а все заимствованные из литер...полностью>>
Математика->Реферат
Учился медицине, потом математике (у пифагорейца Архита в Италии), затем присоединился к школе Платона в Афинах. Около года провёл в Египте, изучал ас...полностью>>
Математика->Курсовая работа
Товста кишка є одним з найбільш розповсюджених місць локалізації злоякісного процесу. Незважаючи на можливості сучасних діагностичних методів, кількіс...полностью>>

Главная > Реферат >Математика

Сохрани ссылку в одной из сетей:

ГРУППЫ ПРЕОБРАЗОВАНИЙ

1.Перемещения

Пусть X - множество всех точек прямой , плоскости или трехмерного пространства . Обозначим через d(P, Q) расстояние между точками P и Q множества X. Отображение f: X ® X f(P) = P называется перемещением, если для всех P и Q d(P, Q) = d(P, Q).

Примеры.

1. Пусть в выбрана правая декартова прямоугольная система координат (x, y) с началом О. Поворот плоскости на угол j вокруг точки О задается формулами R = R. Здесь R = , R = . Очевидно, поворот является перемещением плоскости.

Отметим, что (О) =О, то есть точка О остается неподвижной при повороте. Аналогично, в можно рассмотреть поворот на угол j вокруг оси, заданной единичным вектором v и точкой О. Легко проверить, что это перемещение задается формулой: R =Rcosj + (R´v)sinj +v(1-cosj)(R×v) . Все точки оси поворота являются неподвижными.

  1. Перемещением будет и параллельный перенос на вектор v , Очевидно,

R = R +v . Неподвижных точек перенос не имеет.

  1. Пусть l некоторая прямая в . (Зеркальное) отражение относительно этой прямой является перемещением. Если в декартовой прямоугольной системе координат уравнение прямой имеет вид y = tg(j/2) x , то отражение задается формулой : R = R . Аналогично, если p некоторая плоскость в , то отражение относительно этой плоскости будет перемещением. Если n единичный вектор нормали к плоскости p , проходящей через начало координат, то R = R - 2(R×n)n .

Переносы и отражения (примеры 2 и 3) можно рассматривать и в .

  1. Композиция U*V (последовательное выполнение ) двух перемещений U и V снова будет перемещением: (U*V)(P) = U(V(P)). Например, = * = I - тождественное перемещение.

2. Связь с линейными операторами.

Теорема 1

Пусть f: X ® X - перемещение, A, B, C, D - точки X, f(A) = A и т.д. Если AB = CD (как свободные векторы), то AB = CD .

Доказательство.

Достаточно проверить, что в условиях теоремы четырехугольник ABDC является параллелограммом. Пусть О точка пересечения диагоналей AD и BC. Принадлежность точки О отрезку АD равносильно равенству: d(A, O) + d(O, D) = d(A, D). Поскольку для образов этих точек имеет место аналогичное равенство d(A , O) + d(O, D) = d(A , D) , мы видим, что O лежит на отрезке AD и делит его пополам, поскольку d(A , O) = d(A ,O) = 1/2 d(A ,D) = 1/2 d(A , D) . Аналогично, O лежит на CD и делит его пополам. Следовательно, ABDC - параллелограмм.

Из теоремы 1 следует, что если - пространство свободных векторов, то для всякого перемещения f: X ® X определено отображение: f*: V ® V.

Отметим, что если О - некоторая фиксированная точка X, то для любой точки P точка f(P) получается из O переносом на вектор f*(OP). Отсюда вытекает, что перемещение f однозначно определяется отображением f* и точкой O .

Теорема 2.

Отображение f* является линейным оператором в V и сохраняет скалярное произведение.

Доказательство.

Свойство f*(u + v) = f*(u) +f*(v) следует из определения сложения векторов : если u = AB , v = BC , то u + v = AC. Так как при перемещении любой треугольник ABC переходит в равный треугольник, то сохраняются не только длины, но и углы между векторами, а значит и скалярное произведение. Наконец, использую сохранение скалярного произведения, имеем: = + = - 2+ =0. Следовательно, f*(lv) = lf*(v) , то есть отображение f* линейно.

Следствие

Отображение евклидова пространства V, обладающее свойством является линейным оператором и сохраняет скалярное произведение.

Как известно, оператор в конечномерном пространстве определяется своей матрицей. Матрица A оператора, сохраняющего скалярное произведение, называется ортогональной и имеет следующие свойства:

  1. Матрица А невырождена, более того det(A) = 1. Операторы с определителем 1 сохраняют ориентацию пространства, а с определителем (-1) меняют ее на противоположную.

  2. Все собственные значения A - комплексные числа по модулю равные 1.

Кроме того, известны простейшие формы ортогональных матриц в ортонормированном правом базисе. Эти простейшие формы указаны в следующей таблице:

dimV

det(A) = 1

Название

det(A) = -1

Название

1

I = (1)

Тождест-венный оператор

s = (-1)

Отраже-ние

2

Поворот на угол j

=

Отраже-ние

3

=

Поворот на угол j вокруг OZ

=

Зеркаль-ный пово-рот

Замечание 1.

Учитывая связь между перемещением f и оператором f*, можно утверждать, что в подходящей декартовой системе координат имеет место формула:

R = АR + v , где А - одна из матриц из таблицы, а v - некоторый вектор. Следовательно, всякое перемещение f имеет обратное , которое задается формулой R = (R - v ) = R - v. Поскольку матрица - ортогональна, обратное отображение также является перемещением. Отметим еще, что для всякой ортогональной матрицы P и любого вектора w преобразование R = PR + w является перемещением.

Замечание 2.

Имеется существенное различие между математическим понятием перемещения и физическим понятием движения. Во втором случае имеется в виду непрерывное во времени изменение положения точки, в то время как в первом фиксируются только ее начальное и конечное положения.

Перемещения с det(A) = 1 можно представлять себе и как движения, в то время как при det(A)= -1 такое представление невозможно, если оставаться в пределах исходного пространства X.

  1. Классификация перемещений.

Напомним, что нам уже известны некоторые перемещения. Перемещениями прямой являются тождественное преобразование I, перенос на вектор v и отражение относительно точки О .

Для случая плоскости перемещениями будут уже упомянутые I и , а также поворот вокруг точки О на угол j и отражение относительно прямой l . Определим дополнительно скользящее отражение как комбинацию отражения относительно прямой l с переносом на вектор v½½l .

Наконец, для пространства мы имеем перемещения I и , а, кроме того поворот вокруг оси, заданной точкой О и единичным направляющим вектором w на угол j и отражение относительно плоскости p. Определим дополнительно зеркальный поворот как комбинацию отражения относительно плоскости, заданной точкой О и вектором нормали n с поворотом и скользящее отражение - композицию отражения . относительно плоскости p и переноса на вектор v½½p. Наконец, определим винтовое перемещение как комбинацию поворота и параллельного переноса на вектор hw.

Отметим, что некоторые из указанных выше перемещений являются частными случаями других. Например, тождественное перемещение можно рассматривать как перенос на нулевой вектор (или как поворот на нулевой угол), отражение является частным случаем скользящего отражения при v = 0 и т. д.

Теорема 3 .

Каждое перемещение f в (n = 1, 2, 3 ) суть одно из следующих :

  1. n = 1 ,

  2. n = 2 , ,

  3. n = 3 , , .

Доказательство.

Как уже отмечалось, можно выбрать такой ортонормированный базис, что перемещение f имеет вид R = АR + v , где v - некоторый вектор. Если изменить начало координат : R = r + u , R = r + u , получаем: r = Ar + v , где v = Au -u +v = (A - E)u + v .Мы видим, что если число 1 не является собственным значением матрицы А (или, если угодно, оператора f*) , то можно выбрать u так, что в новой системе координат v = 0 . (Поскольку матрица A - E невырождена). Тем самым утверждение теоремы доказано при n=1 и при n=2 в случае det(A) = 1 (так как собственные значения суть exp(ij)¹ 1 при j¹2pn ).

В случае матрицы можно добиться, чтобы v = , что приводит к скользящему отражению . Для матрицы при j¹2pn получаем v = , и мы приходим к винтовому перемещению . (При j=2pn мы приходим к переносу). Наконец, для при j¹2pn можно считать v = 0 , что приводит к зеркальному повороту , а при j=2pn - v = и получается скользящее отражение .



Загрузить файл

Похожие страницы:

  1. Линейная Алгебра. Теория групп (2)

    Лекция >> Математика
    ... GL(n,R) /SL(n,R) . Лекции по общей алгебре Лекции по общей алгебре Лекция 1 Понятие бинарной алгебраической ... проверить их линейную независимость. Если =0, то поскольку линейно независимы над ... поскольку мы уже убедились в линейной независимости чисел 1, , над ...
  2. Лекции по Основы объектно-ориентированного программирования

    Лекция >> Информатика
    ... библиотеках подпрограмм для решения задач линейной алгебры, метода конечных элементов, ... , как обсуждалось в предыдущей лекции, ПО требуется вся мощь методов моделирования ... в разделе "Обсуждение" этой лекции по поводу рассматривания исключений как объектов ...
  3. Лекции по Менеджменту (3)

    Лекция >> Менеджмент
    ... Д. Современный менеджмент (в схемах): Опорный конспект лекций. — 3-е изд., стереотип. — К.: МАУП ... требованиям Государственных образовательных стандартов по дисциплине “Менеджмент”. ... шахматного типа и аппарата линейной алгебры для исследования структуры ...
  4. Лекции по математике (2)

    Реферат >> Математика
    Раздел 1. Элементы линейной алгебры. 1.1 Матрицы, определители. Вопросы: 1.1.1. Определение матриц, ... их алгебраические дополнения. - разложение определителя по i-й строке. Вычисление определителей порядка n>3 ...
  5. Курс лекций по общему языкознанию

    Лекция >> Иностранный язык
    ... Синтагматические отношения основаны на линейном характере языка, на протяженности ... трансформаций и разрабатывает "ал­гебру трансформаций", то есть ... М., 2002. Супрун А. Е. Лекции по языкознанию; Лекции по языковедению; Лекции по лингвистике. — Минск, 1971, ...

Хочу больше похожих работ...

Generated in 0.00111985206604