Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

Математика->Творческая работа
Примечание: Это доказательство Великой теоремы Ферма является одним из первых выполненных мною доказательств. Оно вошло в «Сборник доказательств Велик...полностью>>
Математика->Творческая работа
Из анализа приведенных расчетов следует, что есть значения числа Y, для которых сумма SN – дробное число. А поскольку сумма арифметической прогрессии,...полностью>>
Математика->Творческая работа
Так как алгебраическое выражение (An + Bn) не является биномом Ньютона, не может быть преобразовано в бином Ньютона, то оно не может быть равно биному...полностью>>
Математика->Задача
Рассчитать по каждой группе и в целом по всем группам: стоимость основных фондов, численность работающих, объем выработанной продукции и выработку на ...полностью>>

Главная > Дипломная работа >Математика

Сохрани ссылку в одной из сетей:

Важно показать при изучении параметров связь параметра с конкретными значениями и эта задача показывает эту связь. Цель этой задачи в том, чтобы показать что задачи, не содержащие параметр, можно решать и способами решения уравнений, содержащих параметр. Решение этого уравнения показывает, что исследования различных решений с параметрами позволяет решать задачи более простыми методами.

Решение. Это уравнение равносильно системе

Представим уравнение системы в виде квадратного уравнения относительно числа 5.

Откуда, учитывая , получаем

Ответ. .

      1. Методы поиска необходимых условий. Использование симметрии аналитических выражений

В тех случаях, когда непосредственный поиск значений переменной затруднен, можно сначала выделить необходимые условия, а затем от необходимых условий перейти к достаточным условиям.

Будем называть задачи, решаемые таким методом, задачами с поиском необходимых условий.

Необходимые условия задач этого пункта:

  1. В каждой задаче обязательно фигурирует аналитическое выражение, геометрический образ которого имеет ось или плоскость симметрии.

  2. Во всех задачах в той или иной форме присутствует требование единственности решения.

Если описываемые задачи имеют решением координаты точки М, то найдется симметричная точка М1, координаты которой тоже являются решением, тогда точка М должна лежать (в силу единственности решения) на оси симметрии, но заметим, что это требование не является достаточным.

Высказанные соображения и составляют основу одного из метода поиска необходимых условий, о котором будет идти речь в следующих задачах (см. [], [], []).

Пример. При каких уравнение имеет одно решение.

Решение. При замене на (и наоборот) уравнение не меняет смысла, поэтому если точка с координатами – решение то и – решение. А так как в условии необходимо единственность решения, то .

Тогда . Так как , то , что возможно только для случая равенства и при . Тогда получаем . Откуда находим два корня уравнения, а в силу единственности, дискриминант приравниваем к нулю и получаем .

Ответ. При уравнение имеет одно решение.

      1. «Каркас» квадратичной функции. Дискриминант, старший коэффициент.

Фактически все важные свойства квадратичной функции определяются таблицей. Где – конструируют «каркас», на котором строится теория квадратичной функции (см. [], [], [], [], [], [], [], [])

X0

X0


Таблица 1.

Пример. При каких значениях параметра все пары чисел , удовлетворяющие неравенству , одновременно удовлетворяют и ?

Решение. Часто бывает удобно начать решение задачи с рассмотрения упрощенной модели. Так, в конкретном случае уместно поставить задачу: при каком соотношении и все решения неравенства одновременно являются решениями неравенства . Ответом на этот вопрос очевиден: .

Тогда в этом примере нужно, чтобы при всех .

.

Найдем дискриминант, . Дискриминант меньший либо равный нулю определит искомый параметр.

, что равносильно системе

Ответ.

      1. «Каркас» квадратичной функции. Вершина параболы

Пример. При каких значениях наибольшее значение трехчлена меньше 4.

Решение.

  1. Так как графиком трехчлена является парабола, то необходимость наибольшего значения меньшего 4 обязывает параметр .

  2. Наибольшее значение будет в вершине параболы.

. Ограничение тоже обязательно. Решением этого неравенства есть . Учитывая необходимость , то .

так как , то решением будет объединение . Тогда Ответ. .

      1. Корни квадратичной функции. Теорема Виета

Рассмотрим квадратное уравнение . Найдем корни этого уравнения . По теореме Виета выполняется следующая система уравнений , где и . Рассмотрим задачу, решение которой при использовании теоремы Виета намного упрощается.

Пример. При каком значении параметра сумма квадратов корней уравнения принимает наименьшее значение?

Решение. Найдем дискриминант, . Уравнение имеет два корня при любом . Используя теорему Виета, найдем . Таким образом, найдем наименьшее значение функции на множестве . Поскольку при , а при , то наименьшее значение при .

Ответ. .

      1. Аппарат математического анализа (касательная к прямой)

Учащиеся, как правило, затрудняются с определением касательной к кривой (типичен ошибочный ответ: «Касательная – это прямая, имеющая с кривой одну общую точку»), не видят связь между касательной к графику и ее производной, не понимают смысла переменных в уравнении касательной, не могут применить соответствующие факты к решению задач, особенно геометрического характера. Пояснить учащимся суть вещей могут помочь, например, следующие задачи (см. [], [], [], []).

Пример. При каком значении параметра k касательная к графику функции образует с осью ОХ угол, равный , и отсекает от второй четверти треугольник, площадь которого равна ?

Решение. Пусть – координаты точки касания. Уравнение касательной к графику функции в точке имеет вид

.

По условию имеем , . Тогда . Уравнение касательной становится таким: . Найдем координаты точки пересечения касательной с осями.

При .

При .

Тогда, с учетом второй четверти и :

Ответ.

Пример. Найти все значения параметра , при которых на графике функции существует единственная точка с отрицательной абсциссой, касательная в которой параллельна прямой .

Решение. Ясно, что угловой коэффициент касательной, о которой говорится в условии, равен 2. Тогда, если – абсцисса точки касания, то , то есть .

Остается потребовать, чтобы это уравнение имело единственный корень. . При уравнение не имеет смысла, при уравнение равносильно:

Введем замену . Тогда . Для единственности корня необходимо, чтобы дискриминант был равен нулю, .

При таких значениях параметра корнем уравнения является , который, как очевидно, принимает отрицательные значения.

Ответ. .

Пример. Найти критические точки функции .

Решение. Напомним определение критической точки. Внутренняя точка области определения функции, в которой производная равна 0 или не существует, называется критической.

Имеем . Поскольку найденная производная существует во всех внутренних точках области определения функции , то критические точки следует искать среди корней уравнения , откуда . Осталось потребовать, чтобы .

Ответ. Если , то - критическая точка;

если - критических точек нет.

    1. Свойства функций в задачах, содержащих параметр. Функциональный подход



Загрузить файл

Похожие страницы:

  1. Численные методы решения задачи нахождения температуры

    Реферат >> Математика
    ... Аналитические методы решения уравнений в частных производных... Численные методы решения уравнений матфизики................................ Метод конечных разностей............................................................... Метод конечных ...
  2. Обучение математическому моделированию как основному методу решения текстовых задач в курсе алгебры основной школы

    Дипломная работа >> Педагогика
    ... способов обращения с информацией, содержащейся в задаче. Правильно ли ... своих психических или личностных параметров). Не меньшее значение ... в математике разработаны многочисленные методы, такие, как методы решения уравнений, исследования функций, измерения ...
  3. Методы программирования

    Лекция >> Информатика, программирование
    ... 69 Параллельное решение систем линейных уравнений 69 Построение ... в параллельные процессы некоторые параметры запуска программы. MPI_FINALIZE ... из буфера buf, содержащего count элементов типа ... Изучение возможных параллельных методов решения данной задачи начнем ...
  4. Рациональные уравнения и неравенства

    Реферат >> Математика
    ... при решении уравнений и систем уравнений. Однородные уравнения. Решение симметрических систем уравнений. Уравнения и системы уравнений с параметрами. Графический метод решения систем нелинейных уравнений. Уравнения, содержащие знак ...
  5. Итерациональные методы решения нелинейных уравнений

    Реферат >> Математика
    ... уравнение с малым параметром, его решение. Достоинства и недостатки методов решения нелинейных уравнений с использованием дифференциальных уравнений с малым параметром. 4.2. Приближенное решение ... приближенными алгоритмами, содержащими лишь конечное число ...

Хочу больше похожих работ...

Generated in 0.0018188953399658