Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

Коммуникации и связь->Курсовая работа
Автоматичне регулювання підсилення призначене для підтримки рівня вихідного сигналу прийомного пристрою або підсилювача поблизу деякого номінального з...полностью>>
Коммуникации и связь->Контрольная работа
Як відомо, одним з основних методів модуляції оптичного випромінювання є керування струмом накачування джерел лазерного випромінювання, що вимагає заб...полностью>>
Коммуникации и связь->Реферат
Для розв'язання проблеми безперервного і невиснажливого лі­сокористування, вирощування високопродуктивних лісових насад­жень відповідно до типу лісоро...полностью>>
Коммуникации и связь->Курсовая работа
Цель работы: разработка блока управления стиральной машиной, обеспечивающий полностью автоматизированный процесс стирки при различных режимах, разной ...полностью>>

Главная > Курсовая работа >Коммуникации и связь

Сохрани ссылку в одной из сетей:

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра радиоэлектронных устройств и систем

КУРСОВАЯ РАБОТА

По дисциплине: «Физические основы микроэлектроники»

Тема: Физические основы работы светоизлучающих диодов

Выполнил студент группы РК-051 Жищенко С.А.

Руководитель профессор Балашов Ю.С.

Воронеж

2007

Оглавление

Введение 4

Технические параметры СИД 6

Физические основы работы СИД 7

Расчет технических параметров СИД 22

Заключение 24

Список литературы 25

Введение

Необходимость дальнейшего освоения оптического диапазона и перенесение на него хорошо развитых в настоящее время методов радиофизики, радиотехники и электроники определяются рядом принципиальных обстоятельств.

Частота электромагнитных колебаний (несущая частота υ0) в оптическом диапазоне существенно выше, чем в радиодиапазоне. Например, частота световых колебаний в наиболее освоенной видимой и ближней инфракрасной областях спектра (~1015 — 1013 Гц) в миллионы раз превышает частоту радиоволн в областях радио- и телевещания. Это определяет высокую информационную емкость оптического канала связи. Напомним, что для передачи обычного телевизионного изображения требуется полоса частот Δυ≈5МГц. Поэтому в метровом диапазоне (при λ=1 м υ0=300 МГц) можно передать лишь около десятка телевизионных программ. В оптическом диапазоне при том же отношении Δυ/υ0 это число возрастает в миллионы раз.

Длина световых волн существенно меньше, чем длина радиоволн. Это позволяет получить высокую концентрацию оптического излучения в пространстве, поскольку минимальный объем, в котором можно сфокусировать электромагнитное излучение, имеет характерные размеры порядка длины волны. Размеры волноводов, по которым может передаваться излучение с малыми потерями, также должны быть порядка длины волны. Поэтому оптические волноводы (световоды) при прочих равных условиях обладают существенно меньшими (на несколько порядков) размерами по сравнению с СВЧ-волноводами, что важно с точки зрения микроминиатюризации электронной аппаратуры. И наконец, в оптическом диапазоне нетрудно сформировать узкую диаграмму направленности излучения с углом расходимости 0,1° и менее. Для формирования подобной диаграммы в радиодиапазоне (при λ=1 м) потребовалась бы антенна диаметром порядка сотен метров. В оптическом диапазоне функцию такой антенны способны выполнить, например, сферическое зеркало или линза умеренных размеров, поскольку для получения одинаковой диаграммы направленности размер антенны пропорционален длине волны.

Передача информации осуществляется фотонами. В отличие от электронов, которые служат основными носителями информации в обычных электронных приборах, фотоны являются электрически нейтральными частицами, не взаимодействующими между собой и с внешним электрическим и магнитным полями. Это определяет возможность идеальной гальванической развязки входа и выхода, однонаправленность потока информации, высокую помехозащищенность, исключение взаимных наводок и паразитных связей между различными элементами схемы. Поэтому использование оптических методов в современной микроэлектронике заметно расширяет ее функциональные возможности, позволяя выполнять многоканальные сложные связи и осуществлять «оптический монтаж», исходя лишь из требуемых функциональных задач. Так как фотон в оптоэлектронных системах является основным носителем информации, то по аналогии с электроникой, оптоэлектронику называют также фотоникой.

Технические параметры СИД

Светоизлучающие диоды КЛ101А, КЛ101Б, КЛ101В. Карбидо-кремниевые диффузионные СИД предназначены для работы в аппаратуре широкого применения. Цвет свечения — желтый. Приборы оформлены в пластмассовом корпусе с плоскими гибкими лужеными выводами; линза — стеклянная (рис. 11,а). Масса прибора не более 0,5 г.

Таблица 1. Основные параметры СИД серии КЛ101.

Тип СИД

Прямой ток Iпр, мА

Яркость при прямом токе Iпр, Lυ, кд/м2, не менее

Цвет свечения

АЛ101А

АЛ101Б

АЛ101В

10

20

40

10

15

20

Желтый

Желтый

Желтый

ИК-диоды АЛ106А, АЛ106Б, АЛ106В. Арсенидо-галлиевые мезадиффузионные ИК-диоды предназначены для работы в радиоэлектронной аппаратуре широкого применения. Приборы оформлены в металлическом корпусе с проволочными гибкими лужеными проводами; линза — стеклянная. Масса приборов 0,5 г.

Таблица 1. Основные параметры СИД серии КЛ106.

Тип СИД

Прямой ток Iпр, мА

Мощность излучения при прямом токе Iпр, Lυ, кд/м2

Длина волны λ, мкм

АЛ106А

АЛ106Б

АЛ106В

100

100

100

0,2

0,4

0,6

0,92-0,935

Физические основы работы СИД

Внешний квантовый выход и потери излучения.

Инжекционная электролюминесценция является физической основой работы светоизлучающих полупроводниковых диодов (СИД). Термином «светоизлучающие диоды» охватывают также излучающие диоды, работающие в инфракрасном диапазоне оптического излучения (ИК-диоды)

Светоизлучающий диод - основной и наиболее универсальный излучатель некогерентной оптоэлектроники. Это обусловливают следующие его достоинства: высокое значение КПД преобразования электрической энергии в оптическую; относительно узкий спектр излучения (квазимоно-хроматичность) для одного типа СИД, с одной стороны, и перекрытие почти всего оптического диапазона излучения СИД различных типов - с другой; высокая для некогерентного излучателя направленность излучения; малые значения прямого падения напряжения, что обеспечивает электрическую совместимость СИД с интегральными схемами; высокое быстродействие; малые габариты, технологическая совместимость с микроэлектронными устройствами; высокая надежность и долговечность.

Качество СИД характеризуется внешним квантовым выходом:

η = γ ηэ ηопт

где γ - коэффициент инжекции; ηэ-внутренний квантовый выход; ηопт - оптическая эффективность или коэффициент вывода света.

Произведение γηэ определяет, эффективность инжекционной электролюминесценции. Однако даже при большом значении γηэ внешний квантовый выход СИД может оказаться малым вследствие низкого вывода излучения из структуры СИД во внешнюю среду. При выводе излучения из активной (излучающей) области СИД имеют место потери энергии (рис. 1).

Потери на самопоглощение (лучи 1 на рис. 1). При поглощении полупроводником фотонов их энергия может быть передана электронам валентной зоны с переводом этих электронов в зону проводимости. Возможно поглощение энергии фотонов свободными электронами зоны проводимости или дырками валентной зоны. При этом энергия фотонов расходуется также на перевод носителей на более высокие для них энергетические уровни, но в пределах соответствующей разрешенной зоны. Возможно примесное поглощение фотонов, при котором их энергия идет на возбуждение примесных уровней. Кроме того, в полупроводниках может происходить поглощение фотонов кристаллической решеткой, поглощение с переходом электронов с акцепторного на донорный энергетический уровень и некоторые другие виды поглощения.

Рис. 1. Потери при выводе оптического излучения из активной области.

Потери на полное внутреннее отражение (лучи 2 на рис. 1). При падении излучения на границу раздела оптически более плотной' среды (полупроводник) с оптически менее плотной (воздух) для части излучения выполняется условие полного внутреннего отражения. Эта- часть излучения, отразившись внутрь кристалла, в конечном счете, теряется за счет самопоглощения.

Полное внутреннее отражение может сильно ограничивать внешний квантовый выход СИД. Этот эффект особенно ярко выражен в полупроводниках с прямыми переходами, где почти все излучение, претерпевшее полное внутреннее отражение, поглощается. В полупроводниках с непрямыми переходами внутреннее поглощение гораздо слабее и, следовательно, излучение имеет большую вероятность дойти до какой-либо поверхности кристалла диода. Потери при прохождении света внутри диодной структуры примерно пропорциональны V/Sx0, где x0 - глубина поглощения, V - объем, S - площадь полной поверхности кристалла СИД.

Потери в полупроводниках обоих типов обусловлены высокими показателями преломления материалов, используемых для СИД (n≈3.3-3.8), и возрастают при уменьшении ширины запрещенной зоны. Излучение, падающее на поверхность под углом 0, превышающий критический угол, претерпевает полное внутреннее отражение. Излучение, падающее под углом, меньшим критического, также частично отражается от непросветленной поверхности. Это френелевские потери. Если на поверхность полупроводника нанести диэлектрическую пленку с соответствующими значениями толщины и показателя преломления, то она будет оказывать просветляющее действие и коэффициент пропускания увеличится; критический угол при этом практически не изменяется.

  1. Потери на обратное и торцевое излучение (лучи 3 и 4 на рис 1). Генерация в активной области полупроводника спонтанная и характеризуется тем, что лучи направлены равновероятно во все стороны. Лучи 3, распространяющиеся в сторону эмиттера, быстро поглощаются. Активная область нередко слегка отличается значением показателя преломления от соседних областей. Поэтому лучи 4 вследствие многократных отражений фокусируются вдоль активной области, так что интенсивность торцевогоIизлучения выше, чем в других направлениях выхода света из кристалла. Количественно эффективность вывода оптического излучения из СИД характеризуется коэффициентом вывода ηопт и определяется отношением мощности излучения, выходящего из СИД, к мощности излучения, которая генерируется внутри кристалла:

ηопт = Pизл Pген

Таким образом, внешний квантовый выход ηопт - это интегральный показатель излучательной способности СИД, который учитывает эффективность инжекции γ, электролюминесценции ηэ и вывода излучения ηопт в создании оптического излучения. Иначе, внешний квантовый выход η. определяется отношением числа излучаемых квантов к числу проходящих за то же время через СИД носителей заряда:

η = Nф Nэ



Загрузить файл

Похожие страницы:

  1. Физические основы электроники: активные электронные компоненты и компоненты оптоэлектроники

    Книга >> Коммуникации и связь
    ... в п. 3.2, газоразрядная светоизлучающая ячейка вследствие эффекта "памяти" ... известные Вам физические эффекты положены в основу работы жидкокристаллических ... 3. Ксенов А.И. Элементы схем бытовой радиоаппаратуры. Диоды. Транзисторы / А.И. Ксенов, А.В. Нефедов. ...
  2. Спектральные характеристики светоизлучающих диодов

    Реферат >> Физика
    ... Рахимов Н.Р. Новосибирск 2009 Содержание Введение……………………………………………3 1.Светоизлучающие диоды…………………………5 1.1 Определение…………………………………5 1.2 Особенности…………………………………7 2.Спектральные ... , активно ведутся работы по созданию светодиодов на основе кремния. В ...
  3. Использование фотоупругого эффекта для измерения физических величин

    Курсовая работа >> Физика
    ... эффекта для измерения физических величин 2.1 Измерение ... В некоторых случаях оказывается предпочтительным работать с деформацией. Тогда задержка ... давления на основе эффекта ... вместо лазерного диода использовался светоизлучающий диод и два оптических ...
  4. Источники оптического излучения (2)

    Реферат >> Физика
    ... от того, какой процесс лежит в основе получения эл.-магн. излучения оптич ... среды (газы, пары металлов), режима работы (непрерывный, импульсный). Различают газосветовые лампы ...
  5. Волоконно оптические линии связи

    Реферат >> Коммуникации и связь
    ... и той же физической реальности. 2.2 ЦВЕТ ... дорогостоящих и продолжительных работ над световодами со ... светоизлучающим диодом световую мощность. 6.5 ЛАЗЕР ИЛИ СВЕТОИЗЛУЧАЮЩИЙ ДИОД? В качестве источников света лазер и светоизлучающий диод ... на основе электрических ...

Хочу больше похожих работ...

Generated in 0.001737117767334