Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

Промышленность, производство->Контрольная работа
Диаграммы состояния, или диаграммы фазового равновесия в удобной графической форме показывают фазовый состав сплава в зависимости от температуры и кон...полностью>>
Промышленность, производство->Дипломная работа
Данная работа посвящена разработке автономной распределённой ИИС, которая устанавливается на танкерах «Волгонефть» Система предназначена для автоматич...полностью>>
Промышленность, производство->Дипломная работа
Компрессорные машины - важные виды продукции машиностроения Они применяются во многих отраслях народного хозяйства: химической, нефтяной, газовой и ма...полностью>>
Промышленность, производство->Шпаргалка
Велико значение измерений в современном обществе Они служат не только основой научно-технических знаний, но имеют первостепенное значение для учета ма...полностью>>

Главная > Лекция >Промышленность, производство

Сохрани ссылку в одной из сетей:

Понятие об изотропии и анизотропии

 

Свойства тела зависят от природы атомов, из которых оно состоит, и от силы взаимодействия между этими атомами. Силы взаимодействия между атомами в значительной степени определяются расстояниями между ними. В аморфных телах с хаотическим располохением атомов в пространстве расстояния между атомами в различных направлениях равны, следовательно, свойства будут одинаковые, то есть аморфные тела изотропны

В кристаллических телах атомы правильно располагаются в пространстве, причем по разным направлениям расстояния между атомами неодинаковы, что предопределяет существенные различия в силах взаимодействия между ними и, в конечном результате, разные свойства. Зависимость свойств от направления называется анизотропией

Чтобы понять явление анизотропии необходимо выделить кристаллографические плоскости и кристаллографические направления в кристалле.

Плоскость, проходящая через узлы кристаллической решетки, называется кристаллографической плоскостью.

Прямая, проходящая через узлы кристаллической решетки, называется кристаллографическим направлением.

Для обозначения кристаллографических плоскостей и направлений пользуются индексами Миллера. Чтобы установить индексы Миллера, элементарную ячейку вписывают в пространственную систему координат (оси X,Y, Z – кристаллографические оси). За единицу измерения принимается период решетки.

Рис.1.3. Примеры обозначения кристаллографических плоскостей (а) и кристаллографических направлений (б)

 

Для определения индексов кристаллографической кристаллографической плоскости необходимо:

 установить координаты точек пересечения плоскости с осями координат в единицах периода решетки;

 взять обратные значения этих величин;

 привести их к наименьшему целому кратному, каждому из полученных чисел.

Полученные значения простых целых чисел, не имеющие общего множителя, являются индексами Миллера для плоскости, указываются в круглых скобках. Примеры обозначения кристаллографических плоскостей на рис. 1.3 а.

Другими словами, индекс по оси показывает на сколько частей плоскость делит осевую единицу по данной оси. Плоскости,параллельные оси, имеют по ней индекс 0 (110)

Ориентация прямой определяется координатами двух точек. Для определения индексов кристаллографического направления необходимо:

 одну точку направления совместить с началом координат;

 установить координаты любой другой точки, лежащей на прямой, в единицах периода решетки

 привести отношение этих координат к отношению трех наименьших целыж чисел.

Индексы кристаллографических направлений указываются в квадратных скобкаж [111]

В кубической решетке индексы направления, перпендикулярного плоскости (hkl) имеют теже индексы [hkl].

 

Аллотропия или полиморфные превращения.

 

Способность некоторых металлов существовать в различных кристаллических формах в зависимости от внешних условий (давление, температура) называется аллотропией или полиморфизмом.

Каждый вид решетки представляет собой аллотропическое видоизменение или модификацию.

Примером аллотропического видоизменения в зависимости от температуры является железо (Fe).

Fe: – ОЦК - ;

– ГЦК - ;

– ОЦК - ; (высокотемпературное )

Превращение одной модификации в другую протекает при постоянной температуре и сопровождается тепловым эффектом. Видоизменения элемента обозначается буквами греческого алфавита в виде индекса у основного обозначения металла.

Примером аллотропического видоизменения, обусловленного изменением давления, является углерод: при низких давлениях образуется графит, а при высоких – алмаз.

Используя явление полиморфизма, можно упрочнять и разупрочнять сплавы при помощи термической обработки.

 

Магнитные превращения

 

Некоторые металлы намагничиваются под действием магнитного поля. После удаления магнитного поля они обладают остаточным магнетизмом. Это явление впервые обнаружено на железе и получило название ферромагнетизма. К ферромагнетикам относятся железо, кобальт, никель и некоторые другие металлы.

При нагреве ферромагнитные свойства металла уменьшаются постепенно: вначале слабо, затем резко, и при определ¨нной температуре (точка Кюри) исчезают (точка Кюри для железа – ). Выше этой температуры металлы становятся парамагнетиками. Магнитные превращения не связаны с изменением кристаллической решетки или микроструктуры, они обусловлены изменениями в характере межэлектронного взаимодействия.

Лекция 2

Строение реальных металлов. Дефекты кристаллического строения

 

  1. Точеные дефекты

  2. Линейные дефекты:

  3. Простейшие виды дислокаций – краевые и винтовые.

 

Из жидкого расплава можно вырастить монокристалл. Их обычно используют в лабораториях для изучения свойств того или иного вещества.

Металлы и сплавы, полученные в обычных условиях, состоят из большого количества кристаллов, то есть, имеют поликристаллическое строение. Эти кристаллы называются зернами. Они имеют неправильную форму и различно ориентированы в пространстве. Каждое зерно имеет свою ориентировку кристаллической решетки, отличную от ориентировки соседних зерен, вследствие чего свойства реальных металлов усредняются, и явления анизотропии не наблюдается

В кристаллической решетке реальных металлов имеются различные дефекты (несовершенства), которые нарушают связи между атомами и оказывают влияние на свойства металлов. Различают следующие структурные несовершенства:

  • точечные – малые во всех трех измерениях;

  • линейные – малые в двух измерениях и сколь угодно протяженные в третьем;

  • поверхностные – малые в одном измерении.

 

Точеные дефекты

 

Одним из распространенных несовершенств кристаллического строения является наличие точечных дефектов: вакансий, дислоцированных атомов и примесей. (рис. 2.1.)


Рис.2.1. Точечные дефекты

 

Вакансия – отсутствие атомов в узлах кристаллической решетки, «дырки», которые образовались в результате различных причин. Образуется при переходе атомов с поверхности в окружающую среду или из узлов решетки на поверхность (границы зерен, пустоты, трещины и т. д. ), в результате пластической деформации, при бомбардировке тела атомами или частицами высоких энергий (облучение в циклотроне или нейтронной облучение в ядерном реакторе). Концентрация вакансий в значительной степени определяется температурой тела. Перемещаясь по кристаллу, одиночные вакансии могут встречаться. И объединяться в дивакансии. Скопление многих вакансий может привести к образованию пор и пустот.

Дислоцированный атом – это атом, вышедший из узла решетки и занявший место в междоузлие. Концентрация дислоцированных атомов значительно меньше, чем вакансий, так как для их образования требуются существенные затраты энергии. При этом на месте переместившегося атома образуется вакансия.

Примесные атомы всегда присутствуют в металле, так как практически невозможно выплавить химически чистый металл. Они могут иметь размеры больше или меньше размеров основных атомов и располагаются в узлах решетки или междоузлиях.

Точечные дефекты вызывают незначительные искажения решетки, что может привести к изменению свойств тела (электропроводность, магнитные свойства), их наличие способствует процессам диффузии и протеканию фазовых превращений в твердом состоянии. При перемещении по материалу дефекты могут взаимодействовать.

 

Линейные дефекты:

 

Основными линейными дефектами являются дислокации. Априорное представление о дислокациях впервые использовано в 1934 году Орованом и Тейлером при исследовании пластической деформации кристаллических материалов, для объяснения большой разницы между практической и теоретической прочностью металла.

Дислокация – это дефекты кристаллического строения, представляющие собой линии, вдоль и вблизи которых нарушено характерное для кристалла правильное расположение атомных плоскостей.

 

Простейшие виды дислокаций – краевые и винтовые.

 

Краевая дислокация представляет собой линию, вдоль которой обрывается внутри кристалла край “лишней“ полуплоскости (рис. 2.2)

а) б)

Рис. 2.2. Краевая дислокация (а) и механизм ее образования (б)

 

Неполная плоскость называется экстраплоскостью.

Большинство дислокаций образуются путем сдвигового механизма. Ее образование можно описать при помощи следующей операции. Надрезать кристалл по плоскости АВСD, сдвинуть нижнюю часть относительно верхней на один период решетки в направлении, перпендикулярном АВ, а затем вновь сблизить атомы на краях разреза внизу.

Наибольшие искажения в расположении атомов в кристалле имеют место вблизи нижнего края экстраплоскости. Вправо и влево от края экстраплоскости эти искажения малы (несколько периодов решетки), а вдоль края экстраплоскости искажения простираются через весь кристалл и могут быть очень велики (тысячи периодов решетки) (рис. 2.3).

Если экстраплоскость находится в верхней части кристалла, то краевая дислокация – положительная (), если в нижней, то – отрицательная (). Дислокации одного знака отталкиваются, а противоположные притягиваются.


Рис. 2.3. Искажения в кристаллической решетке при наличии краевой дислокации

 

Другой тип дислокаций был описан Бюргерсом, и получил название винтовая дислокация

Винтовая дислокация получена при помощи частичного сдвига по плоскости Q вокруг линии EF (рис. 2.4) На поверхности кристалла образуется ступенька, проходящая от точки Е до края кристалла. Такой частичный сдвиг нарушает параллельность атомных слоев, кристалл превращается в одну атомную плоскость, закрученную по винту в виде полого геликоида вокруг линии EF, которая представляет границу, отделяющую часть плоскости скольжения, где сдвиг уже произошел, от части, где сдвиг не начинался. Вдоль линии EF наблюдается макроскопический характер области несовершенства, в других направлениях ее размеры составляют несколько периодов.

Если переход от верхних горизонтов к нижним осуществляется поворотом по часовой стрелке, то дислокация правая, а если поворотом против часовой стрелки – левая.




Загрузить файл

Похожие страницы:

  1. Основы металлургического производства. Материаловедение и технология материалов

    Конспект >> Промышленность, производство
    ... ПРОТИВОПОЖАРНОЙ СЛУЖБЫ Кафедра общетехнических дисциплин Курс лекций по дисциплине “Материаловедение и технология материалов” Часть 1 ... лет. Данная работа позволит издать курс лекций по дисциплине “Материаловедение и технология материалов” в печатном ...
  2. по Материаловедению и ТКМ

    Контрольная работа >> Математика
    ... информационных технологий Контрольная работа Вариант - 2 По курсу « Материаловедение и ТКМ» Содержание Введение 3 I. Производство стали ... комбинированным дутьем", "Металлургия", 1991 г. 6. М.П. Клюев "Лекции по металлургии стали", С.С. Аникушин, Москва, 1993 ...
  3. Теоретическое материаловедение. Строение и свойства чистых металлов

    Конспект >> Химия
    ... использованная при подготовке к лекции: Лахтин Ю.М., Леонтьева В.П. Материаловедение: учебник для машиностроительных ... 0,7% углерода; 3) высокоуглеродистые— больше 0,7 % углерода. По назначению — это конструкционные, машиностроительные и инструментальные ...
  4. Обработка стали. Материаловедение. Элементы теории термической обработки стали

    Конспект >> Промышленность, производство
    ... ) Комплект дидактического материала к курсу лекций по дисциплине «Материаловедение и технология материалов» (Практическое материаловедение и Основные металлические машиностроительные ...
  5. Материаловедение и технология конструкционных материалов для строительства

    Конспект >> Строительство
    Материаловедение и технология конструкционных материалов для строительства* КОНСПЕКТ ЛЕКЦИЙ По материалам пособия: Белов В.В., ... Петропавловская В.Б. Краткий курс материаловедения и технологии ...

Хочу больше похожих работ...

Generated in 0.0012609958648682