Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

Физика->Статья
На основе анализа общедоступных сведений о свойствах Шаровой молнии выдвинута гипотеза, позволяющая объяснить эти свойства Приведены аргументы и обосн...полностью>>
Физика->Реферат
Как известно, современная техника использует лишь те запасы солнечной энергии, которые фиксируют зеленые листья растений или стекающие вниз воды, кото...полностью>>
Физика->Реферат
Начнем с проблемы, которая привлекает сейчас наибольшее внимание физиков, над которой, пожалуй, работает наибольшее количество исследователей и исслед...полностью>>
Физика->Курсовая работа
В настоящее время человечество не может представить свою жизнь без электроэнергии Она везде Но традиционные способы получения электроэнергии не дешевы...полностью>>

Главная > Учебное пособие >Физика

Сохрани ссылку в одной из сетей:

Замедленное спадание потока создает выдержку времени при отпускании.

Для вторичной короткозамкнутой обмотки ненасыщенной системы в этом случае можно записать:

(5.20)


Поскольку величина зазора уменьшилась, индуктивность при притянутом якоре больше, чем при отпущенном L-i.

Решив относительно тока, получим:


(5.21)

Умножив обе части на G\ w2, после преобразования получим:


(5.22)

Благодаря тому, что рабочий зазор в притянутом состоянии в десятки и даже сотни раз меньше, чем в отпущенном можно получить время трогания при отпускании до 10 сек, тогда как время трогания при притяжении составляет доли секунды.

При н. с, равной нулю, в цепи устанавливается поток, определяемый кривой размагничивания материала и воздушным зазором. Этот остаточный поток может создавать силу притяжения большую, чем сила, развиваемая пружиной. Произойдет залипание якоря. Для устранения залипания ставится немагнитная прокладка, снижающая величину остаточного потока.

В реальных конструкциях реле времени магнитная система при притянутом положении якоря сильно насыщена.

Для насыщенной цепи справедливо уравнение


(5.23)

Решив уравнение относительно времени, получим:

(5.24)


гдепоток, при котором сила, развиваемая пружиной, равна силе электромагнита.

Для определения значения интеграла рассчитывается зависимость потока в рабочем зазоре от н. с. После этого строится зависимость 1/ш=/(Ф) и графическим интегрированием решается.

в) Динамика электромагнитов переменного тока. Рассмотрим магнитную цепь электромагнита, у которого магнитопровод ненасыщен. Пусть включение происходит в нуль напряжения. В этом случае можно записать:


(5.25)

Поскольку цепь линейна, ток можно выразить через поток

Подставив, получим:


(5.26)

Решив это уравнение относительно потока, найдем:


(5.27)

где Фт — максимальное значение потока.

Согласно (5.27) при / = 0 поток в системе также равен нулю. Через время t=n/u> поток достигает наибольшего значения, поскольку постоянная составляющая потока складывается с переменной составляющей. Если пренебречь затуханием, то через полпериода поток достигает величины, равной 2Фта.

По мере затухания постоянной составляющей потока пиковое значение потока будет уменьшаться, пока не достигнет Фт. Таким образом, в электромагните переменного тока наибольшие пиковые значения потока, а следовательно, и силы, будут иметь место в начале процесса включения, причем пиковое значение потока и силы наступает примерно через 0,01 сек после начала включения (при частоте тока 50 Гц). Это обеспечивает малое время трогания.

Если магнитная система насыщена, то возникновение постоянной составляющей потока в момент включения ведет к появлению большого сильно искаженного намагничивающего тока.

При включении в нуль тока (потока) постоянная составляющая не появляется и пиковое значение потока появляется через четверть периода после начала включения. Таким образом, и в этом случае обеспечивается быстрое срабатывание электромагнита без применения специальных мер.

Расчет динамических характеристик электромагнитов переменного тока аналитически очень затруднен. Эту задачу удается решить применением аналоговых счетных машин. Необходимо отметить, что в момент включения электромагнита рабочий зазор в магнитной цепи велик, что вызывает согласно большой намагничивающий ток, в десятки раз больший, чем ток в притянутом положении якоря.

Магнитные цепи с постоянными магнитами

а) Общие сведения. Для создания постоянного магнитного поля в целом ряде электрических аппаратов используются постоянные магниты, которые изготавливаются из магнитно-твердых материалов, имеющих широкую петлю гистерезиса (рис.5.6).

Работа постоянного магнита происходит на участке отH= 0 до

H = — Нс. Эта часть петли называется кривой размагничивания.

Рассмотрим основные соотношения в постоянном магните, имеющем форму тороида с одним малым зазором б (рис.5.6). Благодаря форме тороида и небольшому зазору потоками рассеяния в таком магните можно пренебречь. Если зазор мал, то магнитное поле в нем можно считать однородным.


Рис.5.6. Кривая размагничивания постоянного магнита

Если пренебречь выпучиванием, то индукции в зазоре В& и внутри магнита В одинаковы.

На основании закона полного тока при интегрировании по замкнутому контуру 1231 рис. получим:


(5.28)


Рис.5.7 Постоянный магнит, имеющий форму тороида

Таким образом, напряженность поля в зазоре направлена встречно напряженности в теле магнита. Для электромагнита постоянного тока, имеющего аналогичную форму магнитной цепи, без учета насыщения можно написать:

Сравнивая можно видеть, что в случае с постоянным магнитом н. с, создающей поток в рабочем зазоре, является произведение напряженности в теле магнита на его длину с обратным знаком —Hl.

Воспользовавшись тем, что


(5.29)

получим:


(5.30)


или (5.31)

гдеплощадь полюса; проводимость воздушного зазора.

Уравнение есть уравнение прямой, проходящей через начало координат во втором квадранте под углом а к оси Н. С учетом масштаба индукции тв и напряженности тн угол а определяется равенством

(5.32)

Так как индукция и напряженность магнитного поля в теле постоянного магнита связаны кривой размагничивания, то пересечение указанной прямой с кривой размагничивания (точка А на рис.5.6) и определяет состояние сердечника при заданном зазоре.

При замкнутой цепи

и

(5.33)

С ростом б проводимость рабочего зазора и tga уменьшаются, индукция в рабочем зазоре падает, а напряженность поля внутри магнита увеличивается.

Одной из важных характеристик постоянного магнита является энергия магнитного поля в рабочем зазоре Wt. Учитывая, что поле в зазоре однородно,


(5.34)

Подставляя значение Нь получим:

(5.35)

где VM — объем тела магнита.

Таким образом, энергия в рабочем зазоре равна энергии внутри магнита.

Зависимость произведения В(—Н) в функции индукции показана на рис.5.6 . Очевидно, что для точки С, в которой В(—Н) достигает максимального значения, энергия в воздушном зазоре также достигает наибольшей величины, и с точки зрения использования постоянного магнита эта точка является оптимальной. Можно показать, что точка С, соответствующая максимуму произведения есть точка пересечения с кривой размагничивания луча О К, проведенного через точку с координатами

Рассмотрим более подробно влияние зазора б на величину индукции В (рис.5.6). Если намагничивание магнита производилось при зазоре б, то после снятия внешнего поля в теле магнита установится индукция, соответствующая точке А. Положение этой точки определяется зазором б.

Уменьшим зазор до значения бi<б, тогда

(5.36)

При уменьшении зазора индукция в теле магнита возрастает, однако процесс изменения индукции идет не по кривой размагничивания, а по ветви частной петли гистерезиса AMD. Индукция В{ определяется точкой пересечения этой ветви с лучом, проведенным под углом к оси — Н (точка D).

Если мы снова увеличим зазор до значения б, то индукция будет падать до значения В, причем зависимость В (Н) будет определяться ветвью DNA частной петли гистерезиса. Обычно частная петля гистерезиса AMDNA достаточно узка и ее заменяют прямой AD, которую называют прямой возврата. Наклон к горизонтальной оси ( + Н) этой прямой называется коэффициентом возврата:




Загрузить файл

Похожие страницы:

  1. Электрические аппараты (2)

    Шпаргалка >> Коммуникации и связь
    ... Замыкания. Аппараты управления. Контроллеры, командо-аппараты и реостаты. Контроллером называется электрический аппарат с ручным ... геркон) представляет собой электрический аппарат, изменяющий состояние электрической цепи посредством механического размыкания ...
  2. Электрические аппараты и электрические схемы тепловозов

    Реферат >> Транспорт
    ... «Локомотивы» Курсовой проект по дисциплине: «Электрические аппараты и электрические схемы тепловозов» Выполнил: ст. гр ... к выполнению курсовой работы по дисциплине «Электрические аппараты и электрические схемы тепловозов» для студентов специальности ...
  3. Электрофизические процессы в электрических аппаратах

    Контрольная работа >> Физика
    ... , в системах управления электронными аппаратами. Электродинамические силы в электрических аппаратах Известно, что на элемент ... достигать десятков тысяч ньютон. Способность электрического аппарата противостоять механическим нагрузкам, возникающих в ...
  4. Разработка технологических процессов намотки катушек электрических аппаратов

    Курсовая работа >> Физика
    ... ПРОЕКТА По курсу: «Технология производства электрических аппаратов» на тему: «Разработка технологических процессов ... к разработке технологических процессов намотки катушек электрических аппаратов (Сост. В.Н. Иванов, А.В. Бобошко – Харьков: ХПИ ...
  5. Интеллектуальные электрические аппараты

    Реферат >> Промышленность, производство
    Содержание Содержание 2 Введение 3 1.Интеллектуальные электрические аппараты 4 1.1.Интеллектуальные коммутационные аппараты 4 1.2.Интеллектуальные аппараты управления 6 2.Автоматизированные электромеханические системы ...

Хочу больше похожих работ...

Generated in 0.0021400451660156