Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

Физика->Контрольная работа
На высоте h=1м над горизонтальной плоскостью параллельно ей расположен небольшой светящийся диск. Сила света Iо диска в направлении его оси равна 100к...полностью>>
Физика->Шпаргалка
Гравитационное взаимодействие между тепами осуществляется посредством создаваемого гравитационного поля, называемого также полем тяготения. Силовой ха...полностью>>
Физика->Реферат
Магнитные наноструктурированные материалы привлекают внимание многих исследователей, занимающихся изучением магнитных сред для хранения и обработки ин...полностью>>
Физика->Отчет по практике
В настоящее время важнейшей задачей является – развитие промышленности путём всемерной интенсификации и повышения эффективности производства на базе у...полностью>>

Главная > Учебное пособие >Физика

Сохрани ссылку в одной из сетей:

В электромагнитах для реле времени магнитная система при притянутом положении якоря сильно насыщена. В этом случае справедливо уравнение

Решив уравнение относительно , получим

,

где — магнитный поток, при котором усилие пружины равно электромагнитной силе; — начальное значение потока.

Выдержка времени при отпускании при прочих равных условиях определяется начальным потоком Фу уравнения. Этот поток определяется кривой намагничивания магнитной системы в замкнутом состоянии. Поскольку напряжение и ток в обмотке пропорциональны, зависимость повторяет в другом масштабе зависимость . Если система при номинальном напряжении не насыщена, то поток Фу сильно зависит от питающего напряжения. При этом выдержка времени также зависит от напряжения обмотки. Для независимости выдержки времени от питающего напряжения магнитная цепь электромагнитов делается сильно насыщенной. На рис.4 представлена кривая намагничивания магнитной системы . В зоне насыщения колебания питающего напряжения на ведут к незначительному изменению установившегося потока и колебанию времени отпускания в пределах от до . Вся рабочая зона лежит в области напряжений выше . При работе в ненасыщенной зоне даже небольшие колебания питающего напряжения приводят к значительному изменению потока Фу и выдержки времени на отпускание.

В разнообразных схемах автоматики, в которых используются электромагниты, напряжение на их питающие обмотки может подаваться кратковременно. В этом случае для стабильности выдержки времени при отпускании необходимо, чтобы длительность приложения питающего напряжения была достаточна для достижения потоком установившегося значения.


Рис.4. Характеристика намагничивания магнитной системы и зависимость времени отпускания от напряжения питания

Это время называется временем подготовки или зарядки. Если длительность приложения напряжения меньше этого времени, то выдержка времени уменьшается. Время зарядки зависит от габаритов реле и составляет около 1 с.

На выдержку времени электромагнита влияет температура короткозамкнутой обмотки. Согласно

.

Здесь t — время отпускания; — температура нагретой короткозамкнутой обмотки.

Заводы-изготовители гарантируют работу таких электромагнитов в диапазоне температур от -– 40 до +60 °С. Если температура короткозамкнутой обмотки равна окружающей, то при указанном изменении температуры сопротивление, а следовательно, и выдержка времени изменятся почти в 1,5 раза. В среднем можно считать, что изменение температуры на каждые 10 °С ведет к изменению времени выдержки на 4 %. Зависимость выдержки времени от температуры является одним из основных недостатков электромагнитов с короткозамкнутой обмоткой.

Динамика и время срабатывания электромагнитов

а) Время срабатывания. До сих пор мы рассматривали только статические характеристики электромагнитов, когда в их обмотке проходит неизменный ток, причем якорь либо неподвижен, либо якорь движется, но ток в обмотке не меняется по своему действующему значению, поскольку электромагнит имеет последовательную обмотку. В таком режиме работают тормозные и удерживающие электромагниты. В большинстве электромагнитов процесс имеет динамический характер. В этом случае после включения обмотки электромагнита происходит нарастание потока в магнитной цепи до тех нор, пока сила, развиваемая электромагнитом, не станет равна противодействующей силе. По достижении указанного равенства якорь начинает двигаться. При этом ток и поток меняются по весьма сложному закону, определяемому параметрами электромагнита и противодействующей силой. После того как якорь придет в свое конечное положение, ток и поток в электромагните будут продолжать изменяться до тех пор, пока не достигнут установившегося значения.

Рассмотрим более подробно все эти три стадии для электромагнита постоянного тока с параллельной обмоткой. Первая стадия — с момента подачи напряжения до начала трогания якоря. Начиная с момента включения обмотки и до момента начала движения якоря напряжение источника уравновешивается активным падением напряжения и противо– э. д. с. в катушке:

Так как в начальном положении якоря рабочий зазор имеет относительно большое значение, магнитная цепь может считаться ненасыщенной, а индуктивность обмотки— постоянной величиной. Поскольку потокосцепление уравнение можно преобразовать:


(5.4)

Решение этого уравнения относительно тока, как известно, имеет вид:


(5.5)

гдеустановившееся значение тока;

постоянная времени цепи.

Величина тока, при котором начинается движение якоря, называется током трогания /Тр, а время нарастания тока от нуля до /Тр — временем трогания £Тр.

Для момента трогания можно записать в виде


(5.6)

Решив относительно времени трогания, получим:


(5.7)

Таким образом, во-первых, время трогания пропорционально постоянной времени T, и, во-вторых, по мере приближения время трогания начинает быстро расти. Как только начинается движение якоря, зазор уменьшается и индуктивность увеличивается, поскольку Так как при движении якоря индуктивность изменяется, то примет вид:


(5.8)

При движении якоряпоэтому величина тока

начинают уменьшаться, поскольку сумма всех падений напряжения равна неизменному значению напряжения источника U. Зависимость тока от времени показана на рис. 5.1. Чем больше скорость движения якоря, тем больше спад тока. В точке b якорь достиг своего крайнего положения и уменьшение тока прекратилось. После остановки якоря ток будет увеличиваться до тех пор, пока не достигнет установившегося значения причем постоянная времени будет больше, чем, поскольку конечный зазор б меньше, чем начальный зазор б„. Так как в притянутом положении якоря рабочий зазор мал, то возможно насыщение магнитной системы, и закон нарастания тока будет отличаться от экспоненциального, что необходимо учитывать при расчете времени установления потока.


Рис. 5.1. Зависимость тока от времени

Имеется целый ряд методов расчета процессов в электромагните при движении якоря. Как показано на рис. 5.1, в динамике начало движения имеет место при токе. При движении якоря ток вначале еще немного нарастает, а затем падает до величины, меньшей тока трогания. Таким образом, в процессе движения якоря, когда зазор меняется от начального до конечного значения, величина тока в обмотке значительно меньше установившегося значения. Поскольку при движении якоря во всех точках его пути ток в обмотке меньше установившегося значения, то и сила, развиваемая электромагнитом, в динамике значительно меньше, чем в статике при . С этим необходимо считаться при согласовании силы тяги электромагнита и противодействующих сил.

Для ориентировочного определения времени движения можно воспользоваться статической характеристикой. На рис.5.2 изображены статическая тяговая характеристика электромагнита и характеристика противодействующей силы. Разность сил, идет на сообщение ускорения подвижным частям:

(5.9)

где масса подвижных частей, приведенная к рабочему зазору; перемещение якоря; скорость движения якоря.

После интегрирования получим:


(5.10)


Рис.5.2. Статическая тяговая характеристика электромагнита и характеристика противодействующей силы

Интеграл удобно рассчитывается графоаналитически. Скорость в точке хода б равна:




Загрузить файл

Похожие страницы:

  1. Электрические аппараты (2)

    Шпаргалка >> Коммуникации и связь
    ... Замыкания. Аппараты управления. Контроллеры, командо-аппараты и реостаты. Контроллером называется электрический аппарат с ручным ... геркон) представляет собой электрический аппарат, изменяющий состояние электрической цепи посредством механического размыкания ...
  2. Электрические аппараты и электрические схемы тепловозов

    Реферат >> Транспорт
    ... «Локомотивы» Курсовой проект по дисциплине: «Электрические аппараты и электрические схемы тепловозов» Выполнил: ст. гр ... к выполнению курсовой работы по дисциплине «Электрические аппараты и электрические схемы тепловозов» для студентов специальности ...
  3. Электрофизические процессы в электрических аппаратах

    Контрольная работа >> Физика
    ... , в системах управления электронными аппаратами. Электродинамические силы в электрических аппаратах Известно, что на элемент ... достигать десятков тысяч ньютон. Способность электрического аппарата противостоять механическим нагрузкам, возникающих в ...
  4. Разработка технологических процессов намотки катушек электрических аппаратов

    Курсовая работа >> Физика
    ... ПРОЕКТА По курсу: «Технология производства электрических аппаратов» на тему: «Разработка технологических процессов ... к разработке технологических процессов намотки катушек электрических аппаратов (Сост. В.Н. Иванов, А.В. Бобошко – Харьков: ХПИ ...
  5. Интеллектуальные электрические аппараты

    Реферат >> Промышленность, производство
    Содержание Содержание 2 Введение 3 1.Интеллектуальные электрические аппараты 4 1.1.Интеллектуальные коммутационные аппараты 4 1.2.Интеллектуальные аппараты управления 6 2.Автоматизированные электромеханические системы ...

Хочу больше похожих работ...

Generated in 0.0015609264373779