Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

Информатика->Реферат
Основные идеи современной информационной технологии базируются на концепции, согласно которой данные должны быть организованы в базы данных с целью ад...полностью>>
Информатика->Реферат
Пособие предназначено для студентов экономических специальностей и со­ставлено на основе программы по курсу «Мировая экономика» В пособии содержатся м...полностью>>
Информатика->Реферат
В истории вычислительной техники можно проследить развитие двух основных областей ее использования Первая область - применение вычислительной техники ...полностью>>
Информатика->Реферат
На первом этапе проектирования базы данных необходимо определить цель создания базы данных, основные ее функции и информацию, которую она должна содер...полностью>>

Главная > Дипломная работа >Информатика

Сохрани ссылку в одной из сетей:

На першому кроці з використанням міри близькості

(2.2)

виявилося можливим розбити всю сукупність характеристик квітів ірису на два кластери по ступені їхньої близькості до виділених елементів по алгоритму. Отримані в результаті кластери, перший - квіти virginic й versicol, другий - квіти setosa. На другому кроці після проведення аналогічної процедури для даних першого кластера спостерігалися 9 помилок, які розподілилися між класами (квітами) як 5 до 4.

Рисунок 2.1 Графік зміни компонент вектора для всієї вибірки характеристик квітів ірису.

Загальні результати класифікації, представлені у вигляді матриці переплутування

.

Їх можна віднести до одним із кращих результатів кластерізації квітів ірису, що демонструє можливість використання інформаційних властивостей вектора для побудови алгоритмів класифікації багатомірних даних. Можна продовжити дослідження в цьому напрямку для різних вирішальних правил у процедурах класифікації, однак, залишаючи осторонь деталі, підкреслимо, що запропонований спосіб виявлення розходжень є основою для розробки ефективних алгоритмів розпізнавання.

Повернемося до основної мети нашого дослідження з формування інформаційного критерію. Розглянемо окремий випадок, коли матриця в (2.1) складається з одного вектора-стовпця . Для цього випадку представимо (2.1) у вигляді

. (2.3)

Легко перевірити, що

1. ;

2. (2.4)

3. .

На підставі цих властивостей будемо функцію (2.3) називати мірою розходжень компонент вектора або інформаційною мірою, оскільки, там, де є розходження, там є й інформація. Далі, визначимо

(2.5)

і шуканий інформаційний критерій

, (2.6)

де () і () - заелементні операції розподілу й множення відповідно.

Область визначається умовами розв'язуваного завдання. Приведемо приклади використання формули (2.6). Почнемо із простого випадку. Нехай перетворення полягає в заміні вихідного вектора вектором . Тоді область обмежень визначиться співвідношеннями , а величина - рівністю

, (2.7)

звідки треба, що максимально можлива кількість інформації втримується в тотожному перетворенні й дорівнює

, (2.8)

що й випливало очікувати.

Розглянемо більше складні й практично важливі приклади.

2.2.1 Оцінка інформативності ознак

У теорії розпізнавання образів оцінку інформативності ознаки одержують як відношення результатів розпізнавання об'єктів контрольної вибірки в повному просторі ознак до результатів розпізнавання, проведеного без обліку оцінюваної ознаки. Із цього визначення треба, що оцінка інформативності ознаки, мабуть, залежить від вирішального правила. Крім того, ця оцінка залежить від обсягу навчальної вибірки, де показано, що для одержання її достовірного значення, об'єктів у кожному класі повинне бути в десятки разів більше числа досліджуваних ознак.

З погляду змісту поняття "інформативність", можна дати наступне визначення: інформативна ознака - це ознака, що має близькі значення на елементах (об'єктах) одного класу й істотно різні значення на елементах різних класів.

Звідси треба, що для ефективного рішення завдання розпізнавання в алгоритмах класифікації необхідно перейти до використання ознак, що володіють відзначеною властивістю. Область припустимих значень визначимо в такий спосіб. Представимо всю сукупність елементів навчальної вибірки, що припускаємо відомої, у вигляді рядків матриці . Нехай - число розпізнаваних класів, - номер класу, якому відповідає значення -го ознаки на -ом елементі вибірки. Тоді інформативність -го ознаки (стовпця матриці ) можна оцінити на основі рішення завдання (2.6) з областю визначення у вигляді

. (2.9)

Відзначимо, що обумовлена в такий спосіб інформативність ознаки не залежить від одиниць його виміру й ураховує тільки відносні значення розподілу ознак на елементах класів розпізнавання.

Працездатність пропонованого методу покажемо при рішенні ряду завдань. Оцінимо інформативність чотирьох ознак квітів ірису при розбивці його на 3 класи (продовження вище наведеного приклада). Область (2.9) буде складатися із всіх векторів , для компонентів яких виконуються співвідношення:

У таблиці 2.1 представлені результати оцінки інформативності ознак квітів ірису, а на малюнку 1 - графік значень їхніх характеристик. Низька інформативність перших двох ознак обумовлена їхньою невеликою варіативністю, тоді як для останніх двох, навпаки, спостерігається висока варіативність.

Таблиця 2.1 - Результати оцінки інформативності ознак квітів ірису

Властивості ознаки

Ознаки

чашолисток

маточка

довжина

ширина

довжина

ширина

Інформативність

0,0126

0,0079

0,3205

0,8158

Відносний діапазон зміни

0,6116

0,3980

5,0146

12,1539

В останньому рядку таблиці представлена величина відносного діапазону зміни ознаки, обумовлена як сума відносин модуля попарних різниць середніх значень ознаки в класі до їх мінімального середнього значення. Як видно, наведені оцінки інформативності добре погодяться з оцінками варіативності ознак.

Рисунок 2.2 - Графіки зміни ознак квітів ірису

2.2.2 Оптимальна градація ознак.

Дуже часто, у завданнях класифікації й розпізнавання образів ознаки, що описують об'єкти спостереження мають різну природу, наприклад, кількісні і якісні. Їхнє спільне використання при класифікації даних, як правило, пов'язане із серйозними труднощами. У зв'язку із цим виникає завдання перетворення кількісних ознак у якісні, або іншими словами, завдання розбивки кількісних ознак на градації. Причому така розбивка повинне бути оптимальним з погляду потреб розв'язуваного завдання. У дійсній статті пропонується метод градації ознак на основі інформаційного критерію (2.6). Це завдання складніше, ніж визначення ознак розпізнавання, оскільки її рішення припускає не тільки визначення значень критерію (2.6), але й визначення значень порогів градації. Залишаючи осторонь деталі, намітимо шлях рішення цього завдання й приведемо приклади.

Нехай - вектор-стовпець речовинних позитивних чисел упорядкованих по зростанню. Потрібно розбити всі його значень по ступені близькості на груп по значень у кожній (, ). Позначимо . Тоді для завдання (7) область є

.

З формули (2.6) видно, що як цільова функція використається функція

,

мінімізація якої по області дозволяє легко визначити екстремальне . Однак область залежить від значень , обумовлених порядковими номерами порогів градацій . Ці пороги можна знайти з умов мінімізації їхніх внесків у значення цільової функції . Зазначені внески визначаються з наступного очевидного співвідношення

(2.10)

Легко побудувати алгоритм визначення значень на основі методу динамічних згущень й оцінок внесків (2.10). З використанням цього підходу, авторами розроблений ефективний метод градації значень. Його працездатність покажемо на конкретних прикладах.

2.2.3 Градація перших 100 чисел натурального ряду

У табл.2.2 наведені результати градацій цих чисел. Відзначимо, що при відносна величина порога 0,21 близька до золотого перетину 0,168.

Таблиця 2.2 - Результати градації перших 100 чисел натурального ряду

Кількість градацій до

граничні значення

2

3

4

5

10

Як видно з табл.2, результати градації за інформаційним критерієм у порівнянні з рівномірним розподілом зміщені вліво. Це можна пояснити тим, що значення цільової функції залежить від відносних збільшень аргументів, але не від абсолютних.



Загрузить файл

Похожие страницы:

  1. Системи когенерації енергії

    Реферат >> Промышленность, производство
    ... і теплову енергію в централізованих системах теплозабезпечення (у вигляді пару і гарячої ... газотурбінної установки. В системах з замкненим тепловим циклом процеси ... іни з триступеневим розширенням і двоступеневим стисненням і процесом рекуперації. Рис. 9. ...
  2. Система живлення ВАЗ-2121

    Курсовая работа >> Транспорт
    ... палива "L-Jetronic” із карбюраторною системою живлення. Система живлення дизелів має відпов ... багато автомобілів іноземного виробництва із системою впорскування палива (інжектором). Застосування карбюратор ... об’єм,л 1.69 Степінь стиснення 83 Потужність,кВт 58 ...
  3. Система обробки аудіоінформації. Підсистема фільтрації і обробки сигналу

    Дипломная работа >> Информатика, программирование
    ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 11 1. РОЗРОБКА СИСТЕМИ ОБРОБКИ Аудиоинформация ... ... 14 1.1. Обґрунтування ... Функціональне призначення системи .. 20 1.3.3. Особливості системи та умови її ...
  4. Система охолодження ВАЗ-2107

    Курсовая работа >> Транспорт
    ... можна встановлювати і з двигунів 2108. система охолодження вентилятор термостат / —- крильчатка; ... водою і підводять у радіатор стиснене повітря під тиском 1 кгс/ ... навколишнього середовища, технічного обслуговування системи охолодження, її неполадки та методи ...
  5. Система запалювання від магнето

    Реферат >> Транспорт
    ... . Завдання : - визначити призначення та принцип дії системи запалювання від магнето - охарактеризувати особливості конструкц ... ів, кількості ділянок дотикання та сили їх стиснення. Параметром, що використовується для ...

Хочу больше похожих работ...

Generated in 0.001535177230835