Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

Физика->Реферат
В спектрах фотопроводимости полупроводниковых кристаллов непосредственно вблизи края основного поглощения возможно проявление мелких примесно­–дефектн...полностью>>
Физика->Курсовая работа
Микроклимат помещения характеризуется следующими основными показателями: температурой внутреннего воздуха, относительной влажностью воздуха и скорость...полностью>>
Физика->Реферат
Частота электромагнитных колебаний в оптическом диапазоне существенно выше, чем в радиодиапазоне. Например, частота световых колебаний в наиболее осво...полностью>>
Физика->Реферат
Альберт Эйнштейн родился 14 марта 1879 в старинном немецком городе Ульме, в Германии но через год семья переселилась в Мюнхен, где отец Альберта, Герм...полностью>>

Главная > Лекция >Физика

Сохрани ссылку в одной из сетей:

Переходные процессы в цепях с распределенными параметрами.

    1. Уравнение длинной линии во временной области.

Переходные процессы в линии возникают, например, при ее включении и выключении, при воздействии ударных волн и т.п. Для исследовании таких процессов необходимо решать системы уравнений в частных производных при заданных граничных и начальных условиях.

Рассмотрим дифференциальный отрезок однородной линии.

Ток в проводах линии зависит не только от, так как на каждом отрезке ответвляет ток и падает напряжение. Изменение напряжения между проводниками в данной момент времени определяется напряжением на омическом и индуктивном сопротивлениях . Изменение тока связано с током смещения и током проводимости .

Составим уравнения в соответствии с приведенными рисунками.

    1. Уравнение однородной неискажающей линии в операторной форме.

Так как напряжение и ток являются функциями двух переменных и , то операторные изображения являются функциями двух переменных и .

Производная по времени от напряжения изображается:

где есть распределение напряжения вдоль линии при .

Производная от напряжения по будет:

Соответственно изображение для производных тока будут:

Таким образом уравнения однородной линии в операторной форме примут вид:

Существенная особенность уравнений:

Уравнение относительно операторных изображений являются обыкновенными дифференциальными уравнениями, так как содержат только одну переменную .

(аналогично с уравнениями линии, записанными в комплексной форме при гармоническом воздействии).

    1. Решение уравнений однородной неискажающей линии в операторной форме.

Решая совместно полученные уравнения при заданных граничных условиях (при и ) мы можем найти операторные изображения и , а по ним и оригиналы и .

При нулевых начальных условиях уравнения принимают вид:

(2.3.1)

Дифференцируя первое уравнение по и используя второе, находим:

Аналогично для второго уравнения:

.

Решением этого уравнения является:

;

где и не зависят от , но могут быть функциями от , т.е. .

Из уравнения (2.3.1), выражая для операторного изображения тока получаем:

где – операторное волновое (характеристическое) сопротивление линии.

– операторное изображение коэффициента распространения.

Решение упрощается в случае неискажающей линии:

и

Таким образом:

Оригинал функции от , стоящей при множителе , можно получить, применяя формулу Фимана (обратное преобразование Лапласа)

Из последнего выражения видно, что является функцией аргумента , так как и входят совместно только в такой комбинации, т.е. .

Аналогично для функции от при :

Таким образом решения для напряжения и тока запишутся:

    1. Волновые процессы в линии при импульсном воздействии.

Рассмотрим полученные выражения для линии без потерь , тогда:

Пусть в частном случае и . Положив в последнем равенстве , найдем распределение напряжения вдоль линии в начальной момент времени. Возьмем некоторую произвольную точку и предположим, что она перемещается вдоль линии со скоростью , т.е. ее положение определяется координатой . Тогда напряжение в этой движущейся точке не будет зависеть от времени, так как это заключение справедливо для любой точки, движущейся со скоростью , то, следовательно, при начальное распределение напряжения перемещается вдоль линии со скоростью . Т.е. определяет прямую волну напряжения, распространяется вдоль линии со скоростью , т.е. волну напряжения, бегущую вперед и не претерпевающую изменения формы. Аналогично функция определяет обратную волну напряжения, распространяется вдоль линии также без изменения формы со скоростью , или бегущую со скоростью , но в обратном направлении, т.е. бегущую назад.

Т.е. волновые процессы – это суперпозиция двух волн, распространяющихся вдоль линии без изменения формы со скоростью в противоположном направлении. Наличие в выражениях для и множителей и , причем , показывает, что обе волны, по мере продвижения их вдоль линии, затухают по показательному закону.

Данный импульс может возникать в линии, например, при включении линии, либо при локальном воздействии (возникновение индуцированного заряда при разряде – молния).

2.Многополюсники на СВЧ.

    1. Матричное описание распределенных цепей (классическая теория)

В общем случае распределенные цепи описываются уравнениями Максвелла. Однако на практике такие задачи решаются достаточно сложно. Используются такие допущения, которые позволяют использовать методы теории цепей – применять представление элементов в виде многополюсников. Сложное соединение многополюсников рассчитывается с помощью матричного аппарата теории цепей в предположении:

  1. Матрицы, описывающие элементы схем СВЧ остаются неизменными при любом сложном соединении элементов (линейное приближение), т.е. зона возмущенного поля вблизи неоднородности передающей линии;

  2. Взаимодействие элементов осуществляется лишь на основном типе волны.

Параллельное соединение четырехполюсников

Последовательное соединение

Каскадное соединение

(выход предыдущего каскада соединен со входом следующего каскада)



Похожие страницы:

  1. Электронные цепи СВЧ (конспект) Add (2)

    Лекция >> Физика
    ... используя принцип суперпозиции для линейных цепей локальные шумовые источники шума пересчитываются ...
  2. Электронные цепи СВЧ (конспект) Add (1)

    Лекция >> Физика
    Параметры матрицы рассеяния могут быть рассчитаны по известной матрице проводимости четырехполюсника по формуле: , где – единичная матрица. Необходимо отметить важную особенность параметров матрицы рассеяния, связанную с направлением прохождения сигнала. ...
  3. Расчет и проектирование диода Ганна

    Курсовая работа >> Коммуникации и связь
    ... служит для предотвращения проникновения СВЧ- колебаний в цепь источника питания. Низкодобротный ... Конденсатор служит для разделения цепей питания и СВЧ- тракта. Напряжение ... конспект лекцій, 2002г , 99 стр. В.М.Березин, В.С.Буряк «Электронные приборы СВЧ», ...
  4. Радиоприемные устройства. Конспект лекций

    Конспект >> Коммуникации и связь
    ... СЧ, ВЧ, ОВЧ, УВЧ, СВЧ, а также приемники оптического диапазона. ... виды и характеристики ВЦ Входной цепью (ВЦ) называется цепь, соединяющая антенну с первым ... передачи входной цепи? 8. Как осуществляется электронная перестройка контуров входной цепи? Каковы ее ...
  5. Вища фізика. Конспект лекцій

    Реферат >> Физика
    Частина 1. Механіка. Тема 1. Вступ. Кінематика поступального руху. Вступ. Кінематика поступального руху (2 год.) Мета: Ввести основні поняття механіки. План Елементи кінематики. Поступальний рух. Радіус-вектор, траєкторія, шлях, переміщення Швидкість, ...

Хочу больше похожих работ...

Generated in 0.0062739849090576