Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

Главная > Реферат >Математика

Сохрани ссылку на реферат в одной из сетей:

П2.2.2. Методы сглаживания временного ряда (выделение неслучайной составляющей)

Методы выделения неслучайной составляющей в траектории, отражающей поведение временного ряда, подразделяются на два типа.

Методы первого типа (аналитические) основаны на допущении, что известен общий вид неслучайной составляющей в разложении (1.1.1)

f(t) = 1fтр(t) + 2(t) +3(t). (П2.8)

Например, если известно, что неслучайная составляющая временного ряда описывается линейной функцией времени f(t) = 0 + 1t, где 0 и 1  некоторые неизвестные параметры модели, то задача ее выделения (задача элиминирования случайных остатков или задача сглаживания временного ряда) сводится к задаче построения хороших оценок и для параметров модели.

Методы второго типа (алгоритмические) не связаны ограничительным допущением о том, что общий аналитический вид искомой функции (П2.8) известен исследователю. В этом смысле они являются более гибкими, более привлекательными. Однако «на выходе» задачи они предлагают исследователю лишь алгоритм расчета оценки для искомой функции f(t) в любой наперед заданной точке t и не претендуют на аналитическое представление функции (П2.8).

Аналитические методы выделения (оценки) неслучайной составляющей временного ряда. Эти методы реализуются в рамках моделей регрессии, в которых в роли зависимой переменной выступает переменная xt, а в роли единственной объясняющей переменной  время t. Таким образом, рассматривается модель регрессии вида

xt = f(t, ) + t, t = 1,…, T,

в которой общий вид функции f(t, ) известен, но неизвестны значения параметров = (0, 1,…, m). Оценки параметров строятся по наблюдениям . Выбор метода оценивания зависит от гипотетического вида функции f(t, ) и стохастической природы случайных регрессионных остатков t.

Алгоритмические методы выделения неслучайной составляющей временного ряда (методы скользящего среднего). В основе этих методов элиминирования случайных флуктуаций в поведении анализируемого временного ряда лежит простая идея: если «индивидуальный» разброс значений члена временного ряда xt около своего среднего (сглаженного) значения a характеризуется дисперсией 2, то разброс среднего из N членов временного ряда (x1 + x2 +…+ xT) / N около того же значения a будет характеризоваться гораздо меньшей величиной дисперсии, а именно дисперсией, равной 2 / N. А уменьшение меры случайного разброса (дисперсии) и означает как раз сглаживание соответствующей траектории. Поэтому выбирают некоторую нечетную «длину усреднения» N = 2m + 1, измеренную в числе подряд идущих членов анализируемого временного ряда. А затем сглаженное значение временного ряда xt вычисляют по значениям xtm, xtm+1,…, xt, xt+1,…, xt+m по формуле

(П2.9)

где wk (k = m, m + 1,…, m)  некоторые положительные «весовые» коэффициенты, в сумме равные единице, т.е. wk > 0 и . Поскольку, изменяя t от m + 1 до Tm, мы как бы «скользим» по оси времени, то и методы, основанные на формуле (П2.9), принято называть методами скользящей средней (МСС).

Очевидно, один МСС отличается от другого выбором параметров m и wk.

Определение параметров wk основано на следующей процедуре. В соответствии с теоремой Вейерштрасса любая гладкая функция f(x) при самых общих допущениях может быть локально представлена алгебраическим полиномом подходящей степени p. Поэтому берем первые 2m + 1 членов временного ряда x1,…, x2m+1, строим с помощью МНК полином степени p, аппроксимирующий поведение этой начальной части траектории временного ряда, и используем этот полином для определения оценки сглаженного значения f(t) временного ряда в средней (т.е. (m + 1)-й) точке этого отрезка ряда, т.е. полагаем . Затем «скользим» по оси времени на один такт и таким же способом подбираем полином той же степени p к отрезку временного ряда x2,…, xm+2 и определяем оценку сглаженного значения временного ряда в средней точке сдвинутого на единицу отрезка временного ряда, т.е. , и т.д.

В результате мы найдем оценки для сглаженных значений анализируемого временного ряда при всех t, кроме t = 1,…, m и t = T,… T m + 1.

Подбор наилучшего (в смысле критерия МНК) аппроксимирующего полинома к траектории анализируемого временного ряда приводит к формуле вида (П2.9), причем результат не зависит от того, для какого именно из «скользящих» временных интервалов был осуществлен этот подбор.

Метод экспоненциально взвешенного скользящего среднего (метод Брауна [Brown (1963)]). В соответствии с этим методом оценка сглаженного значения в точке t определяется как решение оптимизационной задачи вида

(П2.10)

где 0 < < 1. Следовательно, веса k в критерии Q(f) обобщенного («взвешенного») МНК уменьшаются экспоненциально по мере удаления наблюдений xtk в прошлое.

Решение оптимизационной задачи (П2.10) дает:

(П2.11)

В отличие от обычного МСС здесь скользит только правый конец интервала усреднения и, кроме того, веса экспоненциально уменьшаются по мере удаления в прошлое. Формула (П2.11) дает оценку сглаженного значения временного ряда не в средней, а в правой конечной точке интервала усреднения.

П2.2.3. Подбор порядка аппроксимирующего полинома с помощью метода последовательных разностей

Реализация алгоритмических методов выделения неслучайной составляющей временного ряда связана с необходимостью подбора порядка p локально-аппроксимирующего полинома. Эта же задача возникает и при реализации аналитических методов выделения неслучайной составляющей. При решении этой задачи широко используется так называемый метод последовательных разностей членов анализируемого временного ряда, который основан на следующем математическом факте: если анализируемый временной ряд xt содержит в качестве своей неслучайной составляющей алгебраический полином f(t) = 0 + 1t + ptp порядка p, то переход к последовательным разностям порядка p + 1, исключает неслучайную составляющую, оставляя элементы, выражающиеся только через остаточную случайную компоненту t.

Обсудим способ подбора порядка p полинома, представляющего собой неслучайную составляющую f(t) в разложении анализируемого временного ряда xt. Заметим, прежде всего, что если мы знаем, что среднее значение наблюдаемой случайной величины равно нулю (E = 0), то выборочным аналогом ее дисперсии является величина , где I, i = 1, 2,…, T  наблюденные значения этой случайной величины. Если же E  0, то выборочным аналогом дисперсии будет статистика , так что величина будет давать в этом случае существенно завышенные оценки для D. Возвращаясь к последовательному переходу к разностям kxt, k = 1, 2,…, p + 1, отметим, что при всех k < p + 1 средние значения этих разностей будут отличны от нуля, так как будут выражаться не только через остатки t, но и через коэффициенты 0, 1,…, p и степени t. И только для kp + 1 можно утверждать, что:

E(kxt) = 0 и .

С учетом этих замечаний можно сформулировать следующее правило подбора порядка сглаживающего полинома p, называемое методом последовательных разностей.

Последовательно для k = 1, 2,… вычисляем разности kxt (t = 1,…, T k), а также величины

(П2.12)

Анализируем поведение величины в зависимости от k. Величина как функция k будет демонстрировать явную тенденцию к убыванию до тех пор, пока k не достигнет величины p + 1. Начиная с этого момента величина (П2.12) стабилизируется, оставаясь (при дальнейшем увеличении p) приблизительно на одном уровне. Поэтому значение k = k0, начиная с которого величина стабилизируется, и будет давать завышенный на единицу искомый порядок сглаживающего полинома, т.е. p = k0  1.

Этот метод привлекателен своей простотой, но его практическое применение требует определенной осторожности. Последовательные значения не являются независимыми, и часто обнаруживается тенденция их медленного убывания (а иногда возрастания) без видимой сходимости к постоянному значению. Кроме того, процесс перехода к разностям имеет тенденцию уменьшать относительное значение любого систематического движения, кроме сезонных эффектов с периодом, близким к временному интервалу, так что сходимость отношения не доказывает, что ряд первоначально состоял из полинома плюс случайный остаток, а только то, что он может быть приближенно представлен таким образом. Однако для нас этот метод ценен лишь тем, что он дает верхний предел порядка полинома p, который целесообразно использовать для элиминирования неслучайной составляющей.

П2.3. Модели стационарных временных рядов и их идентификация. Модели авторегрессии порядка p (AR(p)-модели)

В П2.2 рассматривался класс стационарных временных рядов, в рамках которого подбирается модель, пригодная для описания поведения случайных остатков исследуемого временного ряда (1.1.1). Здесь рассматривается набор линейных параметрических моделей из этого класса и методы их идентификации. Таким образом, речь здесь идет не о моделировании временных рядов, а о моделировании их случайных остатков t, получающихся после элиминирования из исходного временного ряда xt его неслучайной составляющей (П2.8). Следовательно, в отличие от прогноза, основанного на регрессионной модели, игнорирующего значения случайных остатков, в прогнозе временных рядов существенно используется взаимозависимость и прогноз самих случайных остатков.

Введем обозначения. Так как здесь описывается поведение случайных остатков, то моделируемый временной ряд обозначим t, и будем полагать, что при всех t его математическое ожидание равно нулю, т.е. Et,  0. Временные последовательности, образующие «белый шум», обозначим t.



Скачать работу

Похожие работы:

Загрузка...