Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

Экология->Контрольная работа
Темы, связанные с ухудшением экологической обстановки практически во всех регионах Земли, не сходят со страниц научных изданий, являются предметом обс...полностью>>
Экология->Контрольная работа
Наиболее последовательно данный вопрос, на наш взгляд, раскрывается на примере исторического развития стран Западной Европы Это является объективной р...полностью>>
Экология->Реферат
Забота об окружающей среде – это забота о городе Совершенствование системы нормирования и устранение административных барьеров – неотъемлемое условие ...полностью>>
Экология->Контрольная работа
1 Предельно допустимый выброс ПДВ, г/с, нагретого вредного вещества из трубы в атмосферу, при котором содержание его в приземном слое не превышает пре...полностью>>

Главная > Дипломная работа >Экология

Сохрани ссылку на реферат в одной из сетей:

СОДЕРЖАНИЕ

Введение

Глава I. Источники углерода на Земле

    1. Источники и резервы углерода на Земле

    2. Углерод в биосфере и почве

Выводы по I главе

Глава II. Глобальный круговорот углерода

2.1 Круговороты химических элементов в биосфере

2.2 Биогеохимические круговороты углерода: ландшафтный, малый и биосферный

Выводы по II главе

Глава III. Влияние круговорота углерода на глобальный климат

3.1 Концентрация углерода в системе литосфера - гидросфера - атмосфера

3.2 Изменение содержания углерода в атмосфере в разные геологические периоды

3.3 Парниковые газы и атмосферные аэрозоли и климат

3.4 Парниковый эффект и климат

Выводы по III главе

Глава IV. Способы понижения концентрации углекислого газа в атмосфере

4.1 Глобальное потепление климата и протокол Киото

4.2 Способы сокращения парниковых газов в атмосфере

Выводы по IV главе

Заключение

Литература

Введение

Тема данной выпускной квалификационной работы: «Глобальный круговорот углерода и климат».

Актуальность. Человеческая деятельность привела к разомкнутости биогеохимического круговорота диоксида углерода (СО2) в наземных экосистемах. Особое место в современных биогеохимических циклах углерода занимают сжигание горючих ископаемых (угля, нефти, газа и др.), обжиг извести, лесные пожары, вырубка лесов, распашка земель. Следствием чего явился прогрессирующий рост его содержания в атмосфере, что катализирует парниковый эффект и может привести к непредсказуемым последствиям – это в первую очередь необратимые глобальные изменения климата в сторону потепления, в результате которых произойдет таяние ледниковых покровов, многолетней мерзлоты и, как следствие, повышение уровня Мирового океана. Будет нарушена экологическая стабильность планеты. Снижение выбросов парниковых газов возможно путем использования альтернативной энергетики, снижения энергоемкости и общей мощности хозяйственной деятельности человека, а также восстановления естественных лесов.

Цель работы: выявить значение круговорота углерода в глобальном изменении климата и определить пути решения связанных с этим экологических проблем.

Объект исследования: глобальный круговорот углерода.

Предмет исследования: влияние концентрации углерода в атмосфере на изменение климата.

Задачи исследования:

  1. Изучить, проанализировать литературу по данной теме;

  2. Определить источники углерода на Земле;

  3. Рассмотреть его биогеохимические круговороты;

  4. Описать влияние концентрации углекислого газа на парниковый эффект;

  5. Определить механизм перераспределения углерода между сферами географической оболочки в разные геологические эпохи;

  6. Выявить основные неопределенности влияния антропогенного углерода на климат;

  7. Выявить способы понижения концентрации углекислого газа в атмосфере.

Глава I. Источники углерода на Земле

    1. Источники и резервы углерода на Земле

Как показывают новейшие исследования возникновение Земли как планеты связано с существованием в прошлом двойной звезды Юпитер-Солнце. Она образовалась из 6-й сброшенной Юпитером оболочки в процессе его звездной эволюции, которая закончилась 3.3 млрд. л.н.

Этим обусловлен первоначальный состав вещества Земли, включающий все элементы шести периодов таблицы Менделеева, синтезированные Юпитером, в том числе такие важные для существования жизни, как углерод - основа биогеохимии.

Основной источник углерода для живых организмов — это атмосфера Земли, где данный элемент присутствует в виде диоксида углерода (углекислого газа, СО2). Масса этого вещества в атмосфере оценивается астрономической цифрой 4 · 1011 тонн! В процессе выветривания и фотосинтеза ежегодно из атмосферы поглощается более 8 · 108 тонн СО2. Если бы не было механизма кругооборота, то за несколько тысяч лет углерод полностью исчез бы из атмосферы, оказался “захороненным” в горных породах. По современным оценкам, масса диоксида углерода, “спрятанного” в горных породах, примерно в 500 раз превышает его запасы в атмосфере. В атмосфере СО2 переносится ветрами как в вертикальном, так и в горизонтальном направлениях.

Диоксид углерода присутствует в воде, где он легко растворяется, образуя слабую угольную кислоту Н2СО3. Эта кислота вступает в реакции с кальцием и другими элементами, образуя минералы, называемые карбонатами. Карбонатные породы, например известняк, находятся в равновесии с диоксидом углерода, который содержится в контактирующей с ними воде. Аналогичным образом количество СО2, растворенного в океанах и пресных водах, определяется его концентрацией в атмосфере. Общее количество растворенных и осадочных углеродсодержащих веществ оценивается примерно в 1,8 трлн. т.

Еще одним переносчиком углерода является метан. Его в атмосфере тоже немало—около 5 · 109 тонн. Однако из атмосферы происходит утечка метана в стратосферу и далее в космическое пространство. Кроме того, метан расходуется и в результате фотохимических реакций. Продолжительность существования молекулы метана в атмосфере в среднем составляет 5 лет.

Углерод в соединении с водородом и другими элементами является одним из основных компонентов клеток растений и животных. Например, в организме человека он составляет около 18% массы тела. Многочисленность и очень широкое распространение живых организмов не позволяют удовлетворительно оценить общее содержание в них углерода. Можно, однако, приблизительно оценить суммарное количество углерода, связываемого растениями, а также выделяемого в процессе дыхания растений, животных и микроорганизмов. Установлено, что зеленые растения поглощают в год около 220 млрд. т CO2. Почти такое же количество этого вещества выделяется в неорганическую среду в процессе дыхания всех живых организмов, а также в результате разложения и сгорания органических веществ.

При определенных условиях разложения и сгорании созданных живыми организмами веществ не происходит, что ведет к накоплению углеродсодержащих соединений. Так, например, древесина живых деревьев может быть на 3-4 тысячелетия надежно защищена от микробного разложения и от пожара корой, способной противостоять действию микробов и огня. Древесина же, попавшая в торфяное болото, сохраняется еще дольше. В обоих случаях связанный в ней углерод оказывается как бы в ловушке и надолго выводится из круговорота. В условиях, когда органическое вещество оказывается захороненным и изолированным от воздействия воздуха, оно разлагается только частично и содержащийся в нем углерод сохраняется. Если впоследствии в течение миллионов лет эти органические остатки подвергаются давлению вышележащих отложений и нагреванию за счет земного тепла, значительная часть его превращается в ископаемое топливо, например в каменный уголь или нефть. Ископаемое топливо образует природный резерв углерода. Несмотря на интенсивное его сжигание, начавшееся с 1700-х годов, неизрасходованными еще остаются примерно 4,5 трлн. т.

Источники пополнения углерода.

Если ограничиться традиционными рамками углеродного цикла, то весь резерв земной атмосферы, океана и биомассы исчерпался бы в довольно короткий срок—за 50—100 тысяч лет. Однако этого не происходит. Почему? Приходится допустить, что запасы углерода на поверхности планеты непрерывно пополняются. Основными источниками поступления углерода ученые считают космос и мантию Земли.

Космическое пространство поставляет нам углерод вместе метеоритным веществом. Точнее будет сказать: поставляло настоящее время поступление космического углерода на планет незначительно — всего 10-10 от общего количества ежегодно “складируемого” в процессе осадконакопления. Но, как полагают многие специалисты, так было далеко не всегда: в прошлые геологические эпохи количество метеоритов и космической пыли было намного больше.

Второй и на сегодняшний день основной поставщик углерода - мантия планеты, причем не только во время извержений вулканов как считалось ранее, но и при дегазации недр, за счет, уже упоминавшегося газового дыхания планеты. Поскольку и здесь углеродные запасы не безграничны, то они, естественно, должны как-то пополняться. И такой механизм пополнения исправно действует и по сей день. Это затягивание осадков океанической коры в мантию при надвигании плит друг на друга.

1.2 Углерод в биосфере и почве

Углерод (С) – активный воздушный и водный мигрант, образующий в биосфере множество органических и минеральных соединений – углеводородов (СО2, СН4, C2H4, С2Н6, СО и др.) и их производных, карбонатов и гидрокарбонатов. Он является главным химическим элементом органического вещества. Углерод в биосфере (педосфере) может находиться в разных фазовых состояниях (твердом, жидком, газообразном), образующих динамическую систему, параметры которой определяются природными и антропогенно-техногенными факторами. Углерод в биосфере представлен наиболее подвижной формой СО2 (диоксид углерода, или углекислый газ).

В истории Земли основным источником СО2 является вулканическая деятельность, связанная с вековой дегазацией мантии и нижних горизонтов земной коры. Кларковое, или среднее, содержание углекислого газа в атмосфере 0,03 % и в настоящее время оно возрастает, достигая 0,035 %, в земной коре – 0,023, в почвах – 2 %; в биосфере: чистых известняках – 12 %, живом веществе – 18, древесине – 50, каменном угле – 80, нефти – 85 % по объему. В углях, нефти, известняках и других породах содержится около 3 х 1016 т углерода, в атмосфере – 6 х 1011, водах океанов и морей – 4 х 1013, литосфере – 2 х 1017, педосфере (углерод гумуса) – 1,5 х 1012 т. Полный оборот углекислого газа атмосферы Земли через фотосинтез оценивается в 300 лет.

Педосфера является одним из основных резервуаров диоксида углерода в биосфере. Почвы участвуют в балансе СО2, СН4, связывая их в различных формах или, наоборот, способствуя их высвобождению в атмосферу, т.е. почвенный покров играет большую роль в газово-атмосферном режиме планеты. Основным источником СО2 в атмосфере служит дыхание почвы, включающее дыхание корней, микроорганизмов и почвенных животных. Например, эмиссия СО2 (в процессе минерализации органического вещества) почвенного покрова в России составляет 3,12 млрд. т/год. Почвенное органическое вещество является хранилищем самых больших запасов (1395,3 Гт) углерода в наземных экосистемах. Таким образом, почвенный покров своей газовой функцией (по отношению к углероду) выполняет в биосфере важнейшую роль поддержания современного оптимального климата.

Одной из главных составных частей газовой фазы почвы (почвенного воздуха) является углекислый газ. Почвенный воздух существенно отличается от атмосферного, в нем в 10–100 раз больше СО2. Это связано с тем, что почва поглощает богатый кислородом (21 %) атмосферный воздух и выделяет СО2 (что характерно для процесса дыхания). Поэтому газообмен между почвой и атмосферой называют "дыханием" почвы. По количеству выделенного СО2 можно ориентировочно судить о биологической активности почвы (характеризует интенсивность биологических процессов, протекающих в почве). Чем интенсивнее биологические процессы в почве, тем больше она выделяет СО2. При одинаковых условиях (температуре, влажности и т.п.) чем выше содержание органического вещества в почве, тем больше она выделяет СО2. В лесных почвах воздух содержит значительно больше СО2 (за счет дыхания корней растений), чем в пахотных.



Скачать работу

Похожие работы:

  1. Круговорот углерода в природе

    Реферат >> Химия
    Круговорот углерода в природе. Основным резервуаром углерода являются горные породы; в них, ... и потенциальное влияние этого ускорения на глобальный климат и экосистемы — весьма актуальные темы ... из 60 или 70 атомов углерода.Углерод в виде сажи, кокса, ...
  2. Экономические аспекты глобального потепления

    Реферат >> Экология
    ... заместитель директора Института изучения климата в Потсдаме. Исследованиям климата в Германии всегда уделялось большое ... влияния хозяйственной деятельности человека на глобальный круговорот углерода. Антропогенно обусловленные выбросы в атмосферу происходят ...
  3. Глобальные функции почв

    Реферат >> Геология
    ... , образовавшихся при совместном влиянии климата, растительности, геологической об­становки ... почвенно-растительным покровом диоксида углерода с последующим погребением в ... для других. В сухопутной ветви глобального круговорота воды почва избирательно отдает в ...
  4. Экология (20)

    Конспект >> Экология
    ... указывалось на взаимосвязанные изменения климата, растительности и животного мира ... Круговороты основных биогенных элементов. 1. Глобальный круговорот воды. 2. Глобальный круговорот углерода. Глобальный круговорот воды Круговороты воды и СО2 в глобальном ...
  5. Управление природопользованием (4)

    Реферат >> Бухгалтерский учет и аудит
    ... создать благоприятный морально-психологический климат в коллективе, сформировать ... производственной деятельностью этих круговоротов. Глобальные процессы, вызываемые людьми ... ПДВ на выбросы в атмосферу монооксида углерода (СО), составляет 3%, углеводородов (СxНy ...

Хочу больше похожих работ...