Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

Строительство->Реферат
После завершения учебы Гропиуса приняли на работу в архитектурное бюро Петера Беренса Вокруг этого мастера в те годы группировались начинающие талантл...полностью>>
Строительство->Реферат
Последние подсчеты определили общий объем воды на нашей планете цифрой — 1385 миллионов кубических километров Если бы Земля представляла собой правиль...полностью>>
Строительство->Курсовая работа
Конструкция, состоящая из системы пересекающихся балок, называется балочной клеткой На балочную клетку укладывают настил в виде металлического листа, ...полностью>>
Строительство->Курсовая работа
Так как природный газ является высокоэффективным энергоносителем, в условиях экономического кризиса газификация может составить основу социально-эконо...полностью>>

Главная > Дипломная работа >Строительство

Сохрани ссылку на реферат в одной из сетей:

Растровые базы данных привлекают простотой организации, быстротой многих операций; они особенно привлекательны для специалистов в области дистанционного зондирования, привыкших оперировать пикселами при обработке информации, а также при представлении первичных и систематизированных данных о высотах рельефа. Растровый файл легко получить путем сканирования фотоотпечатков или бумажных карт. С другой стороны, во многих случаях растровый подход ведет к потере деталей. Растровые данные различных источников могут иметь разный размер элементов, ориентацию, положение, проекцию. В случае их совместного использования необходим процесс интерполяции информации из одной системы элементов растра в другую. При этом переход к элементам большего размера относительно безопасен, переход к меньшим элементам чреват большими неприятностями.

Хорошие результаты дает использование систем, в которых растровый и векторный анализ могут осуществляться параллельно с использованием функций преобразования (конвертирования) форматов. Такие системы позволяют, например, осуществить наложение векторной карты участков с различным типом использования земель на снимок для более точного его дешифрирования, а затем снимок использовать для корректировки векторной карты ареалов растительности.

Обменные форматы данных. Совместное использование разных источников данных (как векторных, так и растровых) связано с еще одним понятием формата данных - шаблоном представления их в файлах данных. Некоторые из них приняты государственными организациями как стандарты, другие определяются распространителями данных и разработчиками программных средств как внутренние форматы. Обилие таких форматов и уже накопленных данных делают чрезвычайно важной проблему разработки специальных обменных форматов и способов их конвертирования. Многие современные ГИС-пакеты представляют широкие возможности для конвертирования внутренних форматов, как в обменные, так и форматы других пакетов.

Графические форматы, используемые как обменные в разных ГИС- и графических пакетах программ, также делятся на векторные и растровые.

Среди векторных наибольшее распространение получил формат DFX пакета AutoCad, использующий для передачи атрибутивной информации формат DBF (Dbase), более подробные характеристики разных форматов можно найти в толковом словаре.

Преобразование данных других цифровых источников. Все больше данных появляется на магнитных носителях, CD-ROM, данных, доступных в сети Internet; (цифровые карты мира - DCW, цифровые картографические данные Геологической службы США - DLG, цифровые космические снимки, так называемые Quicklook, и многие другие).

Нужно помнить, что пока изображения, распространяемые в Internet, зачастую имеют низкое разрешение, растровый формат и ограниченные размеры.

Истинное горизонтальное и вертикальное положение объектов обычно непосредственно определяется в результате полевой съемки. Система спутникового позиционирования (ССП) - новый способ точного определения положения объектов на земной поверхности. Положение объекта рассчитывается по сигналам, поступающим с серии ИСЗ (ГЛОНАСС, Россия, NAVSTAR или GPS, США) с точностью от метров до нескольких сантиметров. Она сопоставима с точностью самых крупномасштабных карт.

2.7.7.Качество данных и контроль ошибок

Представления о качестве данных, их точности и оценке погрешности становятся чрезвычайно важными при создании баз и банков данных ГИС. Существует практически всеобщая тенденция забывать об ошибках в данных, если последние представлены в цифровой форме. Все пространственные данные до некоторой степени неточны, но в цифровой форме они обычно представляются с высокой точностью, определяемой параметрами памяти компьютера. Необходимо каждый раз рассматривать два вопроса:

насколько правильно представляемые в БД цифровые структуры отражают реальный мир;

насколько точно алгоритмы позволяют рассчитать истинное значение результата.

Методы расчета точности определений по картам рассматриваются в курсе картографии, с понятиями надежности и качества географических данных полезно ознакомиться в работе. Показатели качества данных определяются стандартами. Основные из них: позиционная точность и точность атрибутов объектов, а также логическая непротиворечивость, полнота, происхождение, относящиеся к базе данных в целом.

2.7.8.Позиционная точность данных и типы ошибок

Позиционная точность определяется как величина отклонения измерения данных о местоположении (обычно координат) от истинного значения. При ее определении, как правило, исходят из масштаба исследования или первичного материала, например, в данных о природных ресурсах стремятся достичь точности карты заданного масштаба. Обеспечение большей точности требует более качественных исходных материалов, но всегда следует задаться вопросом, оправданы ли дополнительные затраты задачами исследования.

Точность координат определяется по-разному в растровом и векторном представлении.

Точность растра зависит от размера ячеек сетки. Для избежания потери информации можно использовать ячейки меньшего размера с тем, например, чтобы показать искусственные объекты, но следует оценить, что будет представлять выбранная ячейка в заданном масштабе. В большинстве случаев неясно, относятся ли координаты, представленные в растровом формате, к центральной точке ячейки или к одному из ее углов; точность привязки, таким образом, составляет 1/2 ширины и высоты ячейки.

Координаты в векторном формате могут кодироваться с любой мыслимой степенью точности; она ограничивается возможностями внутреннего представления координат в памяти компьютера. Обычно для представления используется 8 или 16 десятичных знаков (одинарная или двойная точность), что соответствует ограничению по точности соответственно до 1/108 и 1/1016 измерения на местности. Для получения такой же точности растра необходимо, соответственно, 108х108 или 1016х1016 ячеек, что невозможно даже при специальном сжатии данных. Но лишь некоторые классы данных соответствуют такой точности векторного представления: данные, полученные точной съемкой, карты небольших участков, составленные на основе крупно­масштабных топографических карт; лишь для немногих природных явле­ний характерны четкие границы, которые можно представить в виде математически определенных линий. Поэтому можно утверждать, что тонкие линии в векторном формате дают ложное ощущение точности. Обычно на карте толщина линии отражает неопределенность положения объекта. Поэтому в векторной системе фиксируется неопределенность положения векторного объекта, а не точность координат. В растровой системе эта неопределенность автоматически выражается размером ячейки, который и дает действительное представление о точности.

Точность базы данных. Почти каждый этап создания БД чреват вне­сением ошибок.

Карты не свободны от погрешностей, которые при цифровании авто­матически переносятся в базу данных; из-за генерализации они не всегда точно фиксируют информацию о местоположении объекта; несоответствия на границах листов могут обусловить несоответствия в базе данных.

Ошибки характерны для данных, взятых из некартографических ис­точников. Они могут появиться и при проведении инвентаризации по аэрофотоснимкам, если изображения дешифрированы неверно, часто возникают потому, что слишком велико доверие к базовым картам. Другие ошибки связаны с проблемой границ и погрешностями классификации. Многие ошибки обусловлены особенностями сбора данных. Ручной ввод цифровых данных весьма утомителен и трудно сохранять качество работы на протяжении долгого времени.

Для снижения ошибок в измерении местоположения используют гео­дезический контроль и системы спутникового позиционирования, а также создание массивов данных географической привязки. К последним предъявляют особенно высокие требования по точности и достоверности еще на этапе сбора исходной информации. Их применение в качестве основы для интеграции данных в известных оригинальных масштабах и проекциях не вызывает затруднений. Во всех других случаях требуется преобразование информации, которое должно выполняться по правилам картографической генерализации и согласования. Большая часть данных о местоположении берется с аэроснимков, при этом точность зависит от правильного размещения контрольных точек. Данные космической съемки труднее расположить с большой точностью - не позволяет разрешение снимка.

На весь набор данных влияют: ошибки регистрации и определения контрольных точек, преобразования координат, особенно когда неизвестна проекция исходного документа; ошибки обработки данных, неправильный логический подход, генерализация и проблемы интерпретации; математические ошибки; потеря точности представления из-за невысокой точности вычислений; перевод векторных данных в растровый формат.

В БД обычно используются данные из разных источников с разной сте­пенью точности. При наложении множества карт точность результирующего материала может оказаться очень низкой. Однако больший интерес представляет показатель пригодности полученной карты. Для некоторых типов операций степень пригодности карт определяется точностью наименее точного слоя БД. Показатель пригодности можно оценить также по его устойчивости при смене порядка ввода данных или изменении веса атрибута.

Часто возникают искусственные признаки ошибок (артефакты) - это нежелательные последствия применения высокоточных процедур для обработки пространственных данных, имеющих небольшую точность. Использование растровых данных позволяет застраховаться от артефактов до тех пор, пока размер элемента растра больше или равен позиционной точности данных. При работе с векторными данными артефакты возникают при кодировании (цифровании) и наложении по­лигонов.

Чтобы проверить позиционную точность, нужно использовать независимый, более точный источник, например, карту более крупного масштаба, данные спутникового позиционирования, первичные ("сырые") данные съемки. Для контроля можно использовать и внутренние признаки: незамкнутые полигоны, линии, проходящие выше или ниже узловых точек, и т. п. Величина этих погрешностей может служить мерой позиционной точности.

Наиболее надежным путем создания качественных БД, особенно для ее многократного и многопользовательского применения, является хранение информации о точности в самой БД в виде атрибутов или метаданных.



Скачать работу

Похожие работы: