Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

Строительство->Дипломная работа
Исследование темы истории топографии Минска интересно тем, что это дает возможность попытаться обобщить знания и материалы об истории развития города,...полностью>>
Строительство->Курсовая работа
Одним из важных средств технического прогресса в промышленности и на транспорте является комплексная механизация трудоемких производственных процессов...полностью>>
Строительство->Реферат
Однією з найважливіших задач в області інсоляції є виконання розрахунків тривалості інсоляції Методику визначення тривалості інсоляції, враховуючи роз...полностью>>
Строительство->Курсовая работа
Целью выполнения курсовой работы является овладение студентом основами проектирования технологии разработки, перемещения и укладки грунта при отрывке ...полностью>>

Главная > Дипломная работа >Строительство

Сохрани ссылку в одной из сетей:

2.8.2.Подсистемы реализации ГИС-технологий в ГИС

Подсистема ввода и коррекции информации предназначена для обеспечения исходной информацией решаемой прикладной задачи, т.е. для адаптации к ней интегрированных в БД ГИС пространственных данных, тем или иным способом представленных в цифровой форме. Ввод в базу данных исходной информации (карты, снимки, атрибуты) - это наиболее узкое место создания ГИС, ограничивающее применение ГИС-технологий: он требует больших затрат труда, утомителен, чреват ошибками, возникает необходимость предварительной подготовки исходных документов (карт) с тем, чтобы их качество соответствовало строгим требованиям автоматизированного ввода. Его стоимость часто составляет более 80% всех затрат на создание конечного продукта. Многочисленные примеры показывают, что создание базы данных становится финалом проекта, который так и не доходит до стадии анализа собранного материала. Одним из выходов может стать совместное пользование цифровыми данными, поскольку все больше пространственных данных переводится в цифровую форму. Процедуры наполнения БД информацией опираются на использование заранее выбранных ГИС-технологий. В их функции входит также конвертирова­ние данных из разных обменных форматов, или преобразования типа растр-вектор или наоборот.

Подсистема хранения пространственной информации - это база данных ГИС - упорядоченное множество введенной и организованной по определенным правилам цифровой информации, управляемое специальной программой (СУБД), связанной с выбранной моделью БД. БД должна отвечать целям исследования, она независима от прикладных программ и доступна множеству пользователей по их запросам: кроме своего прямого назначения (хранения) она обеспечивает доступ к данным, представленным в цифровой форме, и «быстрота» этого доступа - важнейшая характеристика этой подсистемы ГИС.

Подсистема обработки и анализа данных представляет собой программный комплекс, предназначенный для решения прикладных задач. Он обеспечивает возможность: преобразования и взаимных переходов форматов данных в процессе решения задачи; совмещения различных типов информации для изучения взаимосвязей и зависи­мостей; тематического анализа данных (например, дешифрирование снимков, составление производных карт); выполнение таких основных операций с географическими данными как определение расстояний и площадей, статистических характеристик, интерполяция, построение цифровых моделей рельефа (ЦМР) и трехмерных (3D) изображений, профилей. Набор операций определяется математическим и программ­ным обеспечением ГИС.

Особое место в подсистеме обработки и анализа данных отводится моделированию, на котором базируются по существу все научные исследования. Моделирование обеспечивает возможность в более простом и доступном для изучения виде представлять структуру, свойства, взаимосвязи и отношения между объектами и явлениями природных процессов, их динамику и функционирование. Процесс моделирования в ГИС может выполняться либо с использованием математических моделей, в которых параметрами являются количественные характеристики природных процессов или явлений, либо путем экспертной обработки (качественной и количественной оценки) данных. В географии для моделирования чаще всего используются методы статистики, классификации, а также построение математико-карто-графических моделей. Использование разновременных многозональных снимков и карт дает возможность анализировать многомерные модели реальности, естественным образом определяемые многомерностью спектрального пространства, задаваемой числом зон снимков, и временем. Привлекательны и полезны имитационные модели, реализуемые в ГИС с применением средств мультимедиа.

Задача пользователя ГИС заключается прежде всего в правильном выборе метода-модели, адекватной решаемой задаче.

Подсистема вывода в ГИС предназначена как для стандартного отображения результатов решения задач в виде текстов и таблиц, так и для графической визуализации результатов (карт, преобразованных снимков) в виде безбумажных (дисплейных) изображений и в печатном виде.

ГИС должна обладать хорошей пользовательской подсистемой. Это система удобных меню, удобный доступ к базе данных и файлам, удобные средства отображения данных на экране и печатающем устройстве, доступные средства машинной графики. Такой "пользовательский интерфейс" напрямую связан с математическим и программным обеспечением.

Управление проблемно-ориентированной ГИС возлагается на экс­пертную подсистему, которая в простейшем случае может быть реализована на основе предоставления пользователю возможностей развитого интерфейса со всеми компонентами ГИС.

2.9.Применение ГИС в различных областях

Компьютер стал обычным рабочим инструментом. Природоведы и экологи, проектировщики и экономисты, коммерсанты и ученые все чаще стали обращаться к электронным картам как к основе решения производственных задач, проведения исследований и принятия решений. Цифровые модели карт (для краткости - цифровые карты) прочно вошли в повседневную работу не только потому, что это современно, но и потому, что в таком виде они более гибки и удобны для использования. Стремительно развились программные средства, рассчитанные на «рядового» пользователя, а не на программиста и картографа. Наборы цифровых топографических карт появились в качестве самостоятельного коммерческого продукта, а также пользуются популярностью на многочисленных несанкционированных рынках, служащих «зеркалом» спроса на товары. Пользователи все чаще обращаются с вопросом о том, у кого лучше приобретать цифровые карты, сколько они стоят и какого они качества.

Поскольку Дата+ выполнила несколько совместных проектов по подготовке цифровых топографических карт разного масштаба для ряда российских потребителей, то стоит поделиться некоторыми соображениями. Речь пойдет только о топографических картах, которые являются базовыми для многих областей использования.

Прежде всего, необходимо предупредить, что оцифровка топографических карт наиболее «ходовых» открытых масштабов: 100000, 1:200000, 1:1500000, 1:1000000, 1:2500000 - сфера деятельности, которая подлежит лицензирова­нию со стороны Роскартографии. Для получения лицензии любая организация должна предоставить достаточно подробные сведения о технике, программном обеспечении, технологиях и специалистах, доказывающие профессиональную подготовку и наличие необходимых средств для такого вида работ. Организаций, имеющих такую лицензию, не так много. Так что получить лицензированные топографические карты на территорию нашей страны можно лишь у подразделений Роскартографии и Военно-топографического управления. Некоторые Учреждения имеют лицензию на подготовку таких карт исключительно для своей сферы деятельности, и предлагаемые ими карты для другой отрасли использования не вполне легитимны. Это юридическая сторона дела.

На сегодняшний день на рынке цифровых карт предлагается достаточно широкий набор продуктов в разных масштабах и форматах. Практически на территорию страны подготовлены, в том или ином виде, цифровые топографические карты всех открытых масштабов: от среднего (1:200000 - 1:1000000) до обзорного ( 1:25000000 -1:8000000 и мельче). Чем крупнее мас­штаб, тем выше трудоемкость их создания и больше объем работ.

Так, территория России покрывается 214 ли­стами масштаба 1:1000 000 и примерно 5000 одинарными листами масштаба 1:200000.

Один лист карты 1:200000 в формате Arcinfo занимает около 2 Мб. Нетрудно подсчитать, что цифровая карта всей Росси, подготовленная с данного масштаба, потянет уже на объем хорошего жесткого диска. О том, как работать с таким объемом информации, речь пойдет ниже.

Карты России масштаба 1:1000000 существуют в нескольких вариантах. До сих пор многие российские потребители используют DCW(Digital chart of the world)- уникальный в своем роде цифровой картографический продукт. DCW- созданная в США «Цифровая карта Мира» мил­лионного масштаба, пока не имеет аналогов по охвату территории суши цифровой основой такой подробности. Однако создавалась она по американским навигационным данным, так что имеет расхождения не только с нашими картами, но и с российской действительностью. Эта карта сыграла положительную роль в развертывании работ с цифровыми картами в нашей стране и до сих пор служит хорошим материалом для исследовательской деятельности и обучения.

В принципе, карта 1:1000000 в цифровом виде подготовлена Роскартографией по отечественным материалам на территорию всей страны, в том числе и в формате Arcinfo. Проблема лишь в том, что она не соответствует требованиям ГИС (то есть имеет элементарные топологические ошибки), и в том, что большая часть листов бумажных основ данной карты, с которых подготовлен ее цифровой вариант, уже давно устарела. О планах обновления данной карты Роскартографией практически ничего не известно, так что хорошей основой такая цифровая карта также не может служить без ее уточнения и обновления по более свежим материалам дистанционного зондирования или полевых съемок.

Карты масштаба 1:200 000 обычно используются для решения задач на региональном уровне. Цифровые основы с данного масштаба - последний наиболее подробный материал, который можно использовать безо всяких ограничений. Карты масштаба 1:100 000 имеют статус «Для служебного пользования», а более крупных масштабов - гриф секретности. Они также уста­рели и продолжают устаревать намного быстрее, чем их обновляют. Тем не менее, карты данного масштаба - хорошая база для их уточнения по данным дистанционного зондирования, полевых съемок, проектных материалов, а также для подготовки и ведения собственных тематических слоев информации.

Цифровая карта подробности данного масштаба имеется в ряде учреждений в том или ином объеме, но пока не известно о существовании ее в полном объеме. Более половины листов подготовлено в настоящее время в Роскартографии, Министерстве природных ресурсов (ГлавНИВЦ) и ВТУ.О наличии цифровых материалов карт данного масштаба заявляют некоторые коммерческие фирмы. В результате такого состояния дел потребители, нуждающиеся в картах на большие территории (например, нефтяные компании), вынуждены заказывать и приобретать цифровые основы для использования в ГИС пакетах сразу у нескольких производителей. При этом, они сталкиваются с трудностями сведения этих карт в единую основу и сложностью пользо­вания ими. Так, на один и тот же номенклатурный лист масштаба 1:200 000 Роскартография предлагает 85 покрытий Arcinfo, а ГлавНИВЦ - 46 по­крытий. Пользователю придется потрудиться, например, чтобы получить единый слой гидрографии, который разложен в некоторых цифро­вых картах на пять слоев! Количество показываемых на данном масштабе классов объектов в Роскартографии - 698, в ГлавНИВЦ - 572 (по классификаторам).

Карты создаются по одним и тем же бумажным тиражным материалам, но по-разному. Наи­более точны карты, создаваемые путем векторизации пластиков цветоделения. Синтетический материал, на который наносятся отдельные цве­та карты - более надежная основа, чем бумага. Пластики не имеют ошибок сдвигов печати, которые видны невооруженным взглядом на колонке цветов в бумажном оттиске. Например, сдвиг цвета при оттиске может дать ошибку на картах упомянутого масштаба до 600 м, что на порядок выше допуска в бумажных картах. Это приводит к тому, например, что реки в цифровых картах начинают нарушать законы гравитации, не попадая в тальвеги рельефа.

Сама манера оцифровки во многом отражает профессиональные навыки и характер оператора. Так, отдельные значки кустарников в противоположных углах листа карты могут быть оцифрованы одним оператором двумя точками, другим оператором - небольшими кружками вокруг каждого значка, а третьим - изображаться большой площадью, объединяющей оба знака. Эти особенности сразу проявляются в процессе объединения соседних листов. Кстати, сведение листов цифровой карты некоторыми поставщиками рассматривается как дополнительная услуга, а не как обязательное требование к электронным картам и их качеству.

В ряде случаев составители карт четко следуют бумажному оригиналу, стараясь передать не суть отображаемых событий, а способ их изображения. При таком подходе болота, например, перестают быть площадными объектами, а превращаются в отдельные точечные значки, дороги прерываются в местах наложения знаков пунсонов населенных пунктов, а реки не соединяются с акваторией, в которые они впадают. Зачастую подписываются только те участки рек, которые были подписаны на бумажных оригиналах. Небрежность в оцифровке полигональных объектов, имеющих общие границы или логическую связь (например, один объект полностью расположен внутри другого), приводит к тому, что на картах появляются дополнительные объекты, образованные несовпадающими границами, или явные алогизмы: улицы и кварталы, например, заходят за черту города.

Все организации пользуются разными классификаторами объектов, хотя в их основе, как правило, лежит один и тот же восьмизначный классификатор ВТУ, изданный в 1985 г. и предназначавшийся для бумажных карт. Идея классификатора - дать единый составной код объектам топокарты, облегчающий определение их положения в единой иерархической структуре на основе родовой принадлежности, и установление параметров групп, к которым они принадлежит. Те характеристики, которые не укладываются в цифровое кодовое представление - например, собственное название населенного пункта или высотное значение горизонтали - выносятся в дополнительные атрибуты объекта. Отход от идеи иерархического классификатора (например, в кодификаторе, используемом в Глав­НИВЦ) снижает эффективность его использова­ния в ГИС (при поиске класса объекта, применении общего значка для группы и т.п.). То же можно сказать о библиотеках кодов характеристик.



Похожие страницы: