Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

Экономика
Производство включает в себя осуществляемую предприятием деятельность, которая охватывает все фазы производственного процесса от разработки продукта д...полностью>>
Экономика
Причины выбора данной темы обуславливаются, прежде всего, ее бесспорной актуальностью, так как уже не первый десяток лет Франция является одним из вед...полностью>>
Экономика
Рыночная экономика не может быть социально-ориентированной, особенно в период первоначального накопления капитала, когда выживают компании, проводящие...полностью>>
Экономика
По вопросам, в каких пропорциях должно сочетаться государственное и рыночное регулирование, каковы границы и направления государственного вмешательств...полностью>>

Главная

Сохрани ссылку в одной из сетей:

КУРСОВАЯ РАБОТА

по дисциплине "Статистика"

на тему: "Статистическое изучение взаимосвязи социально-экономических явлений"

Введение

Сущность исследования взаимосвязей признаков

1. Основные понятия корреляционного и регрессионного анализа

2. Парная корреляция и парная линейная регрессия

3. Оценка значимости параметров взаимосвязи

4. Непараметрические методы оценки связи

Инфляция

1. Определение инфляции. Открытая и подавленная форма инфляции. Измерение инфляции

2. Способы измерения инфляции

3. Основные методики расчета индексов, их преимущества и недостатки

4. Статистика цен и расчёт ИПЦ в РФ

5. Методология расчета ИПЦ

6. Сезонная корректировка ИПЦ

7. Инфляция в современной России

Практическая глава

Заключение

Литература

ВВЕДЕНИЕ

Все явления и процессы, протекающие в экономике любой страны взаимосвязаны между собой. Статистическое изучение этой взаимосвязи имеет особо важное значение в связи с тем, что оно позволяет выявить закономерности развития и осуществить прогнозирование этих явлений и процессов.

Каждый процесс и явление можно рассматривать с двух сторон. С первой стороны они испытывают влияние других явлений и процессов и выступают как результат этого влияния. С другой стороны каждое явление в свою очередь выступает как фактор, оказывающий влияние на другие явления и процессы. Поэтому признаки, которые испытывают влияние, называются результативными; признаки, которые оказывают влияние - факторные.

Результативные признаки обозначаются через Y, факторные через X. Поэтому в общем виде взаимосвязь между результатом и факторами можно записать формулой: fy =(x1 ,x2 …) следовательно, Y является функцией от всех X.

Если на результат оказывает влияние первый фактор, то в этом случае изучается корреляция и регрессия, которые носят название парных; если на результат оказывает влияние несколько факторов, то изучается множественная корреляция и множественная регрессия.

Важной задачей статистики является разработка методики статистической оценки социальных явлений, которая осложняется тем, что многие социальные явления не имеют количественной оценки.

Но, исследуя явления в самых различных областях, статистика сталкивается с зависимостями, как между количественными, так и между качественными показателями, признаками. При этом задача статистики – обнаружить (выявить) такие зависимости и дать их количественную характеристику.

В настоящее время в мире происходят постоянные изменения стратегий и методов, и проблематика данного исследования по-прежнему несет актуальный характер.

Представляется, что анализ тематики статистические методы изучения взаимосвязи социально-экономических явлений достаточно актуален и представляет научный и практический интерес.

Будущие исследования также актуальны в целях постоянного и обоснованного решения проблемы данной работы.

Целью своей работы я поставила

  • изучение сущности исследования взаимосвязей признаков

  • изучить такое понятие как инфляция, что она из себя представляет и определить методологию ее расчета

  • на практике посмотреть эффективность использования корреляционно-регрессионого анализа, т.е. изучить зависимость суммы активов коммерческих банков y и собственного капитала x.

СУЩНОСТЬ ИССЛЕДОВАНИЯ ВЗАИМОСВЯЗЕЙ ПРИЗНАКОВ

1. Основные понятия корреляционного и регрессионного анализа

Исследуя природу, общество, экономику, необходимо считаться с взаимосвязью наблюдаемых процессов и явлений. При этом полнота описания, так или иначе, определяется количественными характеристиками причинно-следственных связей между ними. Оценка наиболее существенных из них, а также воздействия одних факторов на другие является одной из основных задач статистики.

Формы проявления взаимосвязей весьма разнообразны. В качестве двух самых общих их видов выделяют функциональную (полную) и корреляционную (неполную) связи. В первом случае величине факторного признака строго соответствует одно или несколько значений функции. Достаточно часто функциональная связь проявляется в физике, химии. В экономике примером может служить прямо пропорциональная зависимость между производительностью труда и увеличением производства продукции.

Корреляционная связь (которую также называют неполной, или статистической) проявляется в среднем, для массовых наблюдений, когда заданным значениям зависимой переменной соответствует некоторый ряд вероятных значений независимой переменной. Объяснение тому – сложность взаимосвязей между анализируемыми факторами, на взаимодействие которых влияют неучтенные случайные величины. Поэтому связь между признаками проявляется лишь в среднем, в массе случаев. При корреляционной связи каждому значению аргумента соответствуют случайно распределенные в некотором интервале значения функции.

Например, некоторое увеличение аргумента повлечет за собой лишь среднее увеличение или уменьшение (в зависимости от направленности) функции, тогда как конкретные значения у отдельных единиц наблюдения будут отличаться от среднего. Такие зависимости встречаются повсеместно. Например, в сельском хозяйстве это может быть связь между урожайностью и количеством внесенных удобрений. Очевидно, что последние участвуют в формировании урожая. Но для каждого конкретного поля, участка одно и то же количество внесенных удобрений вызовет разный прирост урожайности, так как во взаимодействии находится еще целый ряд факторов (погода, состояние почвы и др.), которые и формируют конечный результат. Однако в среднем такая связь наблюдается – увеличение массы внесенных удобрений ведет к росту урожайности.

По направлению связи бывают прямыми, когда зависимая переменная растет с увеличением факторного признака, и обратными, при которых рост последнего сопровождается уменьшением функции. Такие связи также можно назвать соответственно положительными и отрицательными.

Относительно своей аналитической формы связи бывают линейными и нелинейными. В первом случае между признаками в среднем проявляются линейные соотношения. Нелинейная взаимосвязь выражается нелинейной функцией, а переменные связаны между собой в среднем нелинейно.

Существует еще одна достаточно важная характеристика связей с точки зрения взаимодействующих факторов. Если характеризуется связь двух признаков, то ее принято называть парной. Если изучаются более чем две переменные – множественной.

Указанные выше классификационные признаки наиболее часто встречаются в статистическом анализе. Но кроме перечисленных различают также непосредственные, косвенные и ложные связи. Собственно, суть каждой из них очевидна из названия. В первом случае факторы взаимодействуют между собой непосредственно. Для косвенной связи характерно участие какой-то третьей переменной, которая опосредует связь между изучаемыми признаками. Ложная связь – это связь, установленная формально и, как правило, подтвержденная только количественными оценками. Она не имеет под собой качественной основы или же бессмысленна.

По силе различаются слабые и сильные связи. Эта формальная характеристика выражается конкретными величинами и интерпретируется в соответствии с общепринятыми критериями силы связи для конкретных показателей.

В наиболее общем виде задача статистики в области изучения взаимосвязей состоит в количественной оценке их наличия и направления, а также характеристике силы и формы влияния одних факторов на другие. Для ее решения применяются две группы методов, одна из которых включает в себя методы корреляционного анализа, а другая – регрессионный анализ. В то же время ряд исследователей объединяет эти методы в корреляционно-регрессионный анализ, что имеет под собой некоторые основания: наличие целого ряда общих вычислительных процедур, взаимодополнения при интерпретации результатов и др.

Поэтому в данном контексте можно говорить о корреляционном анализе в широком смысле – когда всесторонне характеризуется взаимосвязь. В то же время выделяют корреляционный анализ в узком смысле – когда исследуется сила связи – и регрессионный анализ, в ходе которого оцениваются ее форма и воздействие одних факторов на другие.

Задачи собственно корреляционного анализа сводятся к измерению тесноты связи между варьирующими признаками, определению неизвестных причинных связей и оценке факторов оказывающих наибольшее влияние на результативный признак.

Задачи регрессионного анализа лежат в сфере установления формы зависимости, определения функции регрессии, использования уравнения для оценки неизвестных значении зависимой переменной.

Решение названных задач опирается на соответствующие приемы, алгоритмы, показатели, применение которых дает основание говорить о статистическом изучении взаимосвязей.

Следует заметить, что традиционные методы корреляции и регрессии широко представлены в разного рода статистических пакетах программ для ЭВМ. Исследователю остается только правильно подготовить информацию, выбрать удовлетворяющий требованиям анализа пакет программ и быть готовым к интерпретации полученных результатов. Алгоритмов вычисления параметров связи существует множество, и в настоящее время вряд ли целесообразно проводить такой сложный вид анализа вручную. Вычислительные процедуры представляют самостоятельный интерес, но знание принципов изучения взаимосвязей, возможностей и ограничений тех или иных методов интерпретации результатов является обязательным условием исследования.

Методы оценки тесноты связи подразделяются на корреляционные (параметрические) и непараметрические. Параметрические методы основаны на использовании, как правило, оценок нормального распределения и применяются в случаях, когда изучаемая совокупность состоит из величин, которые подчиняются закону нормального распределения. На практике это положение чаще всего принимается априори. Собственно, эти методы – параметрические – и принято называть корреляционными.

Непараметрические методы не накладывают ограничений на закон распределения изучаемых величин. Их преимуществом является и простота вычислений.

2. Парная корреляция и парная линейная регрессия

Простейшим приемом выявления связи между двумя признаками является построение корреляционной таблицы. В основу группировки положены два изучаемых во взаимосвязи признака – Х и У. Частоты fij показывают количество соответствующих сочетаний Х и У.

Если fij расположены в таблице беспорядочно, можно говорить об отсутствии связи между переменными. В случае образования какого-либо характерного сочетания fij допустимо утверждать о связи между Х и У. При этом, если fij концентрируется около одной из двух диагоналей, имеет место прямая или обратная линейная связь.

Наглядным изображением корреляционной таблице служит корреляционное поле. Оно представляет собой график, где на оси абсцисс откладывают значения Х, по оси ординат – У, а точками показывается сочетание Х и У. По расположению точек, их концентрации в определенном направлении можно судить о наличии связи.

В итогах корреляционной таблицы по строкам и столбцам приводятся два распределения – одно по X, другое по У. Рассчитаем для каждого Хi среднее значение У, т.е. , как

(1)

Последовательность точек (Xi, ) дает график, который иллюстрирует зависимость среднего значения результативного признака У от факторного X, – эмпирическую линию регрессии, наглядно показывающую, как изменяется У по мере изменения X.



Похожие страницы:

  1. Статистическое изучение взаимосвязи социально-экономических явлений и процессов

    Учебное пособие >> Экономико-математическое моделирование
    ... А.В. Чернова И.А. Краснобокая СТАТИСТИЧЕСКОЕ ИЗУЧЕНИЕ ВЗАИМОСВЯЗИ СОЦИАЛЬНО-ЭКОНОМИЧЕСКИХ ЯВЛЕНИЙ И ПРОЦЕССОВ Методические указания по ... Статистика" на тему: " Статистическое изучение взаимосвязи социально-экономических явлений и процессов" Выполнил студент ...
  2. Статистическое изучение динамики социально-экономических явлений

    Реферат >> Маркетинг
    ... СТАТИСТИЧЕСКОЕ ИЗУЧЕНИЕ ДИНАМИКИ СОЦИАЛЬНО-ЭКОНОМИЧЕСКИХ ЯВЛЕНИЙ ПОНЯТИЕ И КЛАССИФИКАЦИЯ РЯДОВ ДИНАМИКИ Процесс развития, движения социально-экономических явле­ний ... соци­ально-экономических явлений. Выявление и характеристика трендов и моделей взаимосвязи ...
  3. 7.Статистическое изучение вариации социально-экономических явлений

    Реферат >> Маркетинг
    ... независимо от типа планируемой выборки. 9 Статистические методы изучения взаимосвязей социально-экономических явлений 1.9.1 Причинность, регрессия, корреляция Исследование ...
  4. Регрессионный анализ в статистическом изучении взаимосвязи показателей

    Реферат >> Маркетинг
    ... : Регрессионный анализ в статистическом изучении взаимосвязи показателей Выполнил Проверил: Тюмень, 2010 СОДЕРЖАНИЕ Введение 3 1.Статистическое изучение взаимосвязи социально-экономических явлений и процессов ...
  5. Исследование регрессионного анализа в статистическом изучении взаимосвязи показателей

    Реферат >> Маркетинг
    ... изучение взаимосвязи социально - экономических явлений и процессов; - рассмотрение регрессионного анализа; - исследование регрессионного анализа для изучения объекта исследования. 1. СТАТИСТИЧЕСКОЕ ИЗУЧЕНИЕ ВЗАИМОСВЯЗИ СОЦИАЛЬНО-ЭКОНОМИЧЕСКИХ ЯВЛЕНИЙ ...

Хочу больше похожих работ...