Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

Математика->Задача
6 С помощью F-критерия Фишера оцените статистическую надеж­ность результатов регрессионного моделирования По значениям характеристик, рассчитанных в п...полностью>>
Математика->Контрольная работа
Целью данной контрольной работы является построение и анализ функции спроса на товар А Эконометрические модели спроса строятся в виде уравнений парной...полностью>>
Математика->Курсовая работа
Поставленную задачу будем решать применением метода экспертных оценок и парных сравнений основных объективных и субъективных факторов, послуживших при...полностью>>
Математика->Контрольная работа
формуле получим , , - уравнение прямой АВ Воспользуемся формулой Известно, что высоты треугольника пересекаются в одной точке Р Уравнение высоты СК на...полностью>>

Главная > Реферат >Математика

Сохрани ссылку на реферат в одной из сетей:

Загрузка...
4. Числовые характеристики Платоновых тел.

Основными числовыми характеристиками Платоновых тел является число сторон грани m, число граней n, сходящихся в каждой вершине, число граней Г, число вершин В, число ребер Р и число плоских углов У на поверхности многогранника (табл. 1).

Многогран-ник

Число сторон грани, m

Число граней, сходящихся в вершине, n

Число граней

Г

Число вершин

В

Число ребер

Р

Число плоских углов на поверхности

У

Тетраэдр

3

3

4

4

6

12

Гексаэдр (куб)

4

3

6

8

12

24

Октаэдр

3

4

8

6

12

24

Икосаэдр

3

5

20

12

30

60

Додекаэдр

5

3

12

20

30

60

Таблица 1. Числовые характеристики Платоновых тел.

Рассматривая табл. 1, зададимся вопросом: «нет ли закономерности в возрастании чисел в каждом столбцах граней, вершин и ребер?» По-видимому, нет. Вот в столбце «грани» все сначала пошло хорошо (4 + 2 = 6, 6 + 2 = 8), а потом намеченная закономерность «провалилась» (8 + 2 ). В столбце «вершины» нет даже стабильного возрастания. Число вершин то возрастает (от 4 до 8, от 6 до 20), а то и убывает (от 8 до 6, от 20 до 12). В столбце «ребра» закономерности тоже не видно.

Мы сравнивали числа внутри одного столбца. Но можно рассмотреть сумму чисел в двух столбцах, хотя бы в столбцах «грани» и «вершины» (Г + В). Сравним новую таблицу своих подсчетов (см. табл. 2).

Таблица 2

Правильный

многогранник

Число

Граней и вершин (Г + В)

Ребер (Р)

Тетраэдр

Куб

Октаэдр

Додекаэдр

Икосаэдр

4 + 4 = 8

6 + 8 = 14

8 + 6 = 14

12 + 20 = 32

20 + 12 = 32

6

12

12

30

30

Вот теперь закономерность видна.

Сформулируем ее так: «Сумма числа граней и вершин равна числу ребер, увеличенному на 2»: Г + В = Р + 2.

Итак, получена формула, которая была подмечена уже Декартом в 1640 году, а позднее переоткрыта Эйлером (1752), имя которого с тех пор она и носит. Формула Эйлера верна для любых выпуклых многогранников.

Итак, получена формула, которая была подмечена уже Декартом в 1640 году, а позднее переоткрыта Эйлером (1752), имя которого с тех пор она и носит. Формула Эйлера верна для любых выпуклых многогранников.

Элементы симметрии:

Тетраэдр не имеет центра симметрии, но имеет 3 оси симметрии и 6 плоскостей симметрии.

Радиус описанной сферы:

,

Радиус вписанной сферы:

,

Площадь поверхности:

,

Объем тетраэдра:

.

Куб имеет центр симметрии - центр куба, 9 осей симметрии и 9 плоскостей симметрии.

Радиус описанной сферы:

,

Радиус вписанной сферы:

,

Площадь поверхности куба:

S=a²,

Объем куба:

V=a³.

Октаэдр имеет центр симметрии - центр октаэдра, 9 осей симметрии и 9 плоскостей симметрии.

Радиус описанной сферы:

,

Радиус вписанной сферы:

,

Площадь поверхности:

,

Объем октаэдра:

.

Икосаэдр имеет центр симметрии - центр икосаэдра, 15 осей симметрии и 15 плоскостей симметрии.

Радиус описанной сферы:

,

Радиус вписанной сферы:

,

Площадь поверхности:

,

Объем икосаэдра:

.

Додекаэдр имеет центр симметрии - центр додекаэдра, 15 осей симметрии и 15 плоскостей симметрии.

Радиус описанной сферы:

,

Радиус вписанной сферы:

,

Площадь поверхности:

,

Объем додекаэдра:

.

5. Теория Кеплера.

В Европе в XYI – XYII вв. жил и творил замечательный немецкий астроном, математик и великий фантазер Иоганн Кеплер (1571-1630).

Кеплер действительно выступал в науке как астроном, математик и фантазер. Если бы в нем не было хотя бы одного из названных качеств, то он не смог бы достичь таких высот в науке.

На основе обобщения данных, полученных в результате наблюдений, он установил три закона движения планет относительно Солнца.

Первый закон: каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце.

Второй закон: каждая планета движется в плоскости, проходящей через центр Солнца, причем площадь сектора орбиты, описанная радиус-вектором, изменяется пропорционально времени.

Третий закон: квадраты времени обращения планеты вокруг Солнца относятся, как кубы их средних расстояний от Солнца.

Но это были только гипотезы, пока их не объяснил и уточнил на основе закона всемирного тяготения Исаак Ньютон (1643-1727), создавший теорию движения небесных тел, которая доказала свою жизнеспособность тем, что с ее помощью люди научились предсказывать многие небесные явления.

Но представим себя на месте Кеплера. Перед ним различные таблицы–столбики цифр. Это результаты наблюдений – как его собственных, так и великих предшественников-астрономов. В этом море вычислительной работы человек хочет найти некоторую закономерность. Что поддерживает его в таком грандиозном замысле? Во-первых, вера в гармонию, уверенность в том, что мироздание устроено закономерно, а значит, законы его устройства можно обнаружить. А во-вторых, фантазия в сочетании с терпением и честностью. В самом деле, ну надо же от чего-то оттолкнуться! Искомые законы надо сначала придумать в собственной голове, а потом проверять их наблюдениями.

Сначала Кеплера соблазнила мысль о том, что существует всего, пять правильных многогранников и всего шесть (как казалось тогда) планет Солнечной системы: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн. Показалось, что гармония мира и любовь природы к повторениям сделали правильные многогранники связующими звеньями между шестью небесными телами. Кеплер предположил, что сферы планет связаны между собой вписанными в них Платоновыми телами. Так как для каждого правильного многогранника центры вписанной и описанной сфер совпадают, то вся модель будет иметь единый центр, в котором располагается Солнце.

Кеплер выполнил огромную вычислительную работу, чтобы подтвердить свои предположения. В 1596 году он выпустил книгу, в которой они были изложены. Согласно этим предположениям, в сферу орбиты Сатурна можно вписать куб, в который вписывается сфера орбиты Юпитера. В нее, в свою очередь, вписывается тетраэдр, описанный около сферы орбиты Марса. В сферу орбиты Марса вписывается додекаэдр, в который вписывается сфера орбиты Земли. А она описана около икосаэдра, в который вписана сфера орбиты Венеры. Сфера этой планеты описана около октаэдра, в который вписывается сфера Меркурия. Такая модель Солнечной системы получила название «Космического кубка» Кеплера.

6. Задача о проверке космической теории Платоновых тел.

Можно проверить самим космическую теорию Платоновых тел. Рассмотрим задачу:

«Средние радиусы орбиты Сатурна и Юпитера равны соответственно Rс= 1, 427·109 км и Rю = 0,788 · 109 км. Найдите отношение радиусов орбит указанных планет и сравните найденное отношение с отношением радиусов описанной около куба и вписанной в него сфер».

Решение.

Согласно гипотезе Кеплера эти отношения должны быть равны. Итак, из наблюдений имеем:

.

Согласно гипотезе в сферу орбиты Сатурна вписан куб, пусть его ребро равно а. Тогда радиус вписанной окружности равен половине диагонали вписанного куба, т.е. но и тогда . В этот куб вписана сфера (орбита Юпитера). Обозначим ее радиус через r. Он равен половине ребра куба, т.е. . Тогда .

Как видим, расхождение между теоретическим отношением R : r и наблюдаемым Rс : Rю не так уж и велико, менее 0,1. А для космических масштабов оно вроде бы и допустимо. Эти «почти совпадения» и заставляли Кеплера долго держаться за теорию платоновых тел, поскольку легко было заподозрить ошибку в наблюдениях.

Год за годом он уточнял свои наблюдения, перепроверял данные коллег, но, наконец, нашел в себе силы отказаться от заманчивой гипотезы. Однако ее следы просматриваются в третьем законе Кеплера, где говорится о кубах средних расстояний от Солнца.

Каким образом они могли появиться в сознании человека, если бы он не рассуждал об объеме пространственных тел? Ведь именно объем, как мы знаем, выражается кубами линейных размеров тел. Но это тоже гипотеза, гипотеза о том, как были найдены законы Кеплера. У нас нет возможности ее проверить, но мы твердо знаем одно: без гипотез, иногда самых неожиданных, казалось бы, бредовых, не может существовать наука.



Скачать работу

Похожие работы:

  1. Правильные многогранники (3)

    Реферат >> Математика
    ... теории правильных многогранников 5-10 § 1. Определение многогранника и его элементов 5-6 § 2. Пять правильных многогранников 7-8 § 3. Теорема Эйлера 9 Глава 2. Исследования правильных многогранников ...
  2. Многогранник и его изучение многогранника в начальной школе

    Реферат >> Педагогика
    ... теме, выявлены особенности правильных многогранников, изготовлены чертежи, развёртки, модели правильных многогранников. Многогранник в трёхмерном пространстве, совокупность ...
  3. Многогранники (2)

    Реферат >> Математика
    ... до зрелого математика. Особый интерес к правильным многоугольникам и правильным многогранникам связан с красотой и совершенством формы ... Это последняя звездчатая форма правильного додекаэдра. Правильный многогранник,составленный из 12 равносторонних ...
  4. Построение графических примитивов Математические модели поверхностей и объектов

    Курсовая работа >> Математика
    ... остальные правильные многогранники. Сам факт существования всего пяти действительно правильных многогранников удивителен - ведь правильных многоугольников ...
  5. Кристаллы (2)

    Реферат >> Геология
    ... рассматривались тогдашней наукой. В значительной мере правильные многогранники были изучены древними греками. Некоторые ... пяти правильным многогранникам и первое известное доказательство того, что их ровно пять. Правильные многогранники характерны ...

Хочу больше похожих работ...

Загрузка...