Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

Математика->Реферат
Первоначально теория квадратичных форм использовалась для исследования кривых и поверхностей, задаваемых уравнениями второго порядка, содержащими две ...полностью>>
Математика->Реферат
Многие физические законы, которым подчиняются те или иные явления, записываются в виде математического уравнения, выражающего определенную зависимость...полностью>>
Математика->Лабораторная работа
Современная величина ренты является важнейшей характеристикой потока платежей, которая определяет стоимость будущего денежного потока на настоящий мом...полностью>>
Математика->Курсовая работа
Остойчивостью называется способность судна, выведенного из положения нормального равновесия какими-либо внешними силами, возвращаться в свое первонача...полностью>>

Главная > Лекция >Математика

Сохрани ссылку на реферат в одной из сетей:
Загрузка...

Лекція 14. Чисельне розв’язування задачі Коші для звичайних диференціальних рівнянь І-го порядку

План

1. Основні типи рівнянь інженерної практики.

2. Методи розв’язування диференціальних рівнянь.

3. Постановка задач для звичайних диференціальних рівнянь (ЗДР)

4. Методи розв’язування задачі Коші для ЗДР.

4.1. Метод Ейлера.

4.2. Модифіковані методи Ейлера та Ейлера-Коші.

4.3. Метод Рунге-Кутта.

5. Приклад розв’язування задачі Коші для ЗДР І-го порядку в середовищі системи Mathcad.

1. Основні типи рівнянь інженерної практики

Всі рівняння інженерної практики можна розділити на два класи:

  • числові рівняння – описують стаціонарні статичні процеси і їх розв’язком є числа;

  • функціональні рівняння – описують нестаціонарні динамічні процеси і їх розв’язком є функції.

Функціональні рівняння діляться на два класи:

  • диференціальні рівняння (ДР) – функція під знаком диференціала;

  • інтегральні рівняння – функція під знаком інтеграла.

Диференціальні рівняння можна розділити на два класи:

  • звичайні диференціальні рівняння (ЗДР) – функція залежить від однієї змінної;

  • диференціальні рівняння в частинних похідних – функція залежить від двох або більше змінних.

Порядком ДР називається найвищий порядок похідної або диференціала, який входить в це рівняння. Розв’язком ДР називається функція, підстановка якої в рівняння перетворює його в тотожність.

Існує три типи розв’язків ЗДР:

  • загальний розв’язок – сімейство розв’язків ЗДР, яке лежить від довільних постійних, кількість яких співпадає з порядком цього рівняння;

  • частковий розв’язок – може бути отриманий із загального розв’язку при певних числових значеннях довільних постійних, які в нього входять;

  • особливий розв’язок – розв’язок, який у всіх своїх точках не задовільняє умову єдиності, тобто в будь-якому околі особливого розв’язку існує хоча б дві інтегральні криві, які проходять через цю точку.

2. Методи розв’язування диференціальних рівнянь

Серед методів розв’язування ДР можна виділити такі:

  • класичні (точні) методи – дають можливість отримати розв’язки у вигляді формул шляхом аналітичних перетворень і табличного інтегрування елементарних функцій, але ці методи не завжди можна застосувати, а у випадку застосування часто дають складні та громіздкі розв’язки;

  • наближені методи:

а) графічні методи – наближений розв’язок у вигляді графіків;

б) аналітичні методи – базуються на спрощенні заданих рівнянь так, щоб більш просте рівняння можна було б розв’язати класичними методами, але при цьому виникає питання про достовірність отриманого розв’язку;

  • числові методи – наближені розв’язки дають у вигляді таблиць.

Числові методи, на даний час, отримали дуже широке застосування у зв’язку з інтенсивним розвитком обчислювальної техніки. Ідея цих методів базується на заміні диференціальних рівнянь і додаткових умов системою алгебраїчних рівнянь, розв’язок якої отримуємо у табличному вигляді.

3. Постановка задач для ЗДР

Для всіх фізичних задач характерним є наявність межі Γ області G, в якій вивчається той чи інший процес. Ці межі можуть бути скінченними або нескінченними. Оскільки математична модель повинна адекватно описувати певне фізичне явище в даному виділеному середовищі, то вона включає в себе не тільки диференціальне рівняння або систему диференціальних рівнянь, але й додаткові або крайові умови, які задаються у вигляді значень шуканої функції або її похідних для деяких значень незалежних змінних, тобто в окремих точках, або у вигляді залежностей шуканої функції та її похідних на деякій області.

Додаткові (крайові) умови – це сукупність граничних і початкових умов. Граничні умови задають режим фізичного процесу на межі Γ області G, а початкові умови накладають обмеження на функцію u та її похідні по часу до (n-1)-го порядку в деякий початковий момент t=t0.

Для знаходження часткового розв’язку диференціального рівняння необхідно задати додаткові (крайові) умови, кількість яких повинна бути не меншою, ніж порядок рівняння.

В залежності від способу задання додаткових (крайових) умов для відшукання часткового розв’язку диференціального рівняння розглядають задачу Коші та крайову задачу.

Якщо ці умови відносяться до однієї точки, то задача називається задачею Коші, додаткові умови – початковими умовами, а сама точка – початковою. Якщо ж ці умови відносяться до більш, ніж однієї точки, то така задача називається крайовою задачею, а відповідні умови – граничними умовами.

  1. Задача Коші. Знайти функцію y=y(x), яка задовольняє диференціальне рівняння (1)

і початкові умови: (2)

При постановці задачі Коші для ЗДР n-го порядку задається значення функції y(x) в деякій точці, а також значення похідних цієї функції в цій точці до (n-1)-го порядку включно.

  1. Крайова задача. Знайти на деякому проміжку [a, b] функцію y=y(x), яка задовольняє всередині відрізка диференціальному рівнянню (3)

а на кінцях відрізка – граничним умовам:

(4)

4. Методи розв’язування задачі Коші для ЗДР

Нехай на проміжку [x0, b]задана задача Коші для ЗДР І-го порядку

Необхідно знайти функцію y=y(x), яка є розв’язком рівняння (5) і задовольняє початкову умову (6).

На проміжку [x0, b] з допомогою точок побудуємо рівномірну різницеву сітку з (k+1) вузлом, відстань між якими дорівнює h: (7)

Задача полягає у знаходженні значень у вузлах сітки (7) шуканої функції y(x), яка є розв’язком задачі Коші (5)-(6)

y(x0)= y0, y(x1)= y1, y(x2)= y2, …, y(xk-1)= yk-1, y(xk)= yk. (8)

Одним з найбільш простих та універсальних числових методів розв’язування диференціальних рівнянь є метод скінченних різниць, який базується на розкладі шуканої функції y(x) в ряд Тейлора в h-околі точки

(9)

4.1. Метод Ейлера

З розкладу (9) беремо перші два члени

(10)

що, з використанням (8), можна записати у вигляді

(11)

У відповідності з (5) це рівносильно

(12)

або (13)

де – залишковий член.

З (13) отримаємо різницеву схему, яка апроксимує в точках (7) розв’язок задачі Коші та має вигляд рекурентних формул

(14)

де (15)

Коли розв’яжемо систему числових рівнянь, то отримаємо значення

(16)

що відповідають шуканим значенням (8).

З (12) випливає, що метод Ейлера має перший порядок точності і з віддаленням від початкової точки похибка накопичується. На практиці частіше використовують різні модифікації методу Ейлера, які дають більш високу точність.

4.2. Модифіковані методи Ейлера та Ейлера-Коші

Якщо з розкладу (9) взяти перші три члени, то отримаємо розрахункові формули для модифікованих методів Ейлера та Ейлера-Коші, які мають другий порядок точності , що при малих h забезпечує більш високу точність, ніж метод Ейлера. Ці методи можна представити такими рекурентними формулами:

модифікований метод Ейлера

(17)

модифікований метод Ейлера -Коші

(18)

4.3. Метод Рунге-Кутта

Якщо з розкладу (9) взяти перші п’ять членів, то отримаємо розрахункові формули для методу Рунге-Кутта, який має четвертий порядок точності , що забезпечує більш високу точність, ніж розглянуті раніше, які фактично є методами Рунге-Кутта відповідно І-го і ІІ-го порядків.

Цей метод можна представити такими рекурентними формулами:

(19)

5. Приклад розв’язування задачі Коші для ЗДР І-го порядку в середовищі системи Mathcad

Диференціальні рівняння першого порядку можуть, за означенням, містити , крім шуканої функції , тільки її першу похідну . В більшості випадків диференціальне рівняння можна записати в стандартній формі

і тільки з такою формою може працювати обчислювальний процесор MathCad.

Крім диференціального рівняння , потрібно задати початкову умову – значення функції в деякій точці . Необхідно визначити функцію на проміжку від до .

Для чисельного інтегрування звичайного диференціального рівняння (ЗДР) у користувача системи MathCad є вибір – або використати обчислювальний блок Given/Odesolve, або одну із вбудованих функцій Rkfixed, Rkadapt, Bulstoer. Розглянемо послідовно обидва варіанти розв’язування.

Обчислювальний блок Given/Odesolve

Обчислювальний блок для розв’язування одного диференціального рівняння, який реалізує чисельний метод Рунге-Кутта, складається із трьох частин:

  • Given –ключове слово;

  • звичайне диференціальне рівняння та початкова умова, записані за допомогою логічних операторів, причому початкова умова повинна бути записана у формі ;

  • Odesolve() – вбудована функція для розв’язання звичайного диференціального рівняння відносно змінної на проміжку .

Приклад 1. Розв’язати задачу Коші для ЗДР першого порядку на проміжку .

Розв’язання:

Вбудована функція Rkfixed

Так як розв’язування за допомогою вбудованої функції Rkfixed мало чим відрізняється від попередньго способу ( за допомогою обчислювального блоку), то приведемо приклад його використання. Звернемо лише Вашу увагу на необхідність явного задання кількості точок інтегрування ЗДР M=100, а також на отримання результату, на відміну від обчислювального блоку, не у вигляді функції, а у вигляді матриці розмірності . Ця матриця складається із двох стовпців: в одному знаходяться значення аргументу , а в другому відповідні значення шуканої функції .

Приклад 2. Розв’язати задачу Коші для ЗДР першого порядку на проміжку .

Розв'язання:

Скачать работу

Похожие работы:

  1. Теорія автоматичного управління спеціальними системами

    Конспект >> Коммуникации и связь
    ... диференціальне рівняння системи другого порядку необхідно привести до нормальної форми Коші. Для цього спочатку диференціальне рівняння ... звичайними диференціальними рівняннями ... для вирішення багатьох задач ... [n]. (3.3) Різниця k-го порядку має вигляд:  ... чисельною ...
  2. Аналіз економічного та соціального розвитку в Україні та місті Харкові

    Дипломная работа >> Политология
    ... порядку ... 3 3 7 11 12 4 5 7 5 7 3 2 4 4 9 Усього: 177 Таблиця 1.2 Чисельність посадових категорій по підрозд ... диференц ... для рішення за­дач ... вняне ... го ... альний захист усіх категорій громадян; залучення для фінансування соціальних виплат та вирішення соціальних ... звичайно ... кош ...
  3. Бюджетна система України Місцеві бюджети

    Дипломная работа >> Финансы
    ... і кош-тів за ... звичайно - окремо для ... lnx; для показового рівняння у = а x bx будемо мати рівняння lnу ... чисельністю ... го ... порядку формування видатків місцевих бюджетів[19,c.8.1.] є вкрай недостатня диференц ... для вирішення стратегічних задач економічного і соціального ...
  4. Система підвищення ефективної діяльності комерційного банку на основі зарубіжного досвіду

    Дипломная работа >> Банковское дело
    ... і; спрощення порядку ліцензування ... зручних для порівняння, ... альній мережі. Рис. 2.1 Динаміка росту чисельност ... диференці ... для вирішення ... кошів ... для всіх операцій, що звичайно ... задача інформаційної системи для менеджера - підтримка прийняття рішень ... чня 2004-го року // ...
  5. Основи фінансового аналізу (2)

    Отчет по практике >> Финансовые науки
    ... для вирішення виробничих, соціально ... товарів; в порядку диверсифікац ... чисел, диференційний, ... грошових кошів, пов ... фінанси для рішення задач другого ... йної звичайної ді ... внянні з об'єктами, що входять в інші класи. На основі чисельно ... нка для j-го підприємства Для нашого ...

Хочу больше похожих работ...

Загрузка...