Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

Промышленность, производство->Реферат
Выбрать способ формообразования, марку материала и режим термической или химико-термической обработки для высоконагруженного диска плуга диаметром 85 ...полностью>>
Промышленность, производство->Реферат
В качестве исходных данных используется схеме механизма (Рис.1) привода машины, работающий при длительной, неизменной или слабо меняющейся наибольшей ...полностью>>
Промышленность, производство->Контрольная работа
Показателем современной деловой культуры и высокого профессионализма сотрудников учреждений и органов ФСИН России является компетентность в вопросах д...полностью>>
Промышленность, производство->Другое
Приведена подробная методика лабораторных работ, инструкции по использованию лабораторного хлебопекарного оборудования, описание контрольно-измеритель...полностью>>

Главная > Реферат >Промышленность, производство

Сохрани ссылку в одной из сетей:

Основная допустимая погрешность прибора ±2% от верхнего предела шкалы.

На рисунке 23 показана принципиальная схема бесшкального дифманометра-расходомера с двумя металлическими мембранными коробками и с системой электрической дифференциально-трансформаторной передачи показаний на расстояние. Чувствительный элемент прибора состоит из разделительной перегородки 1, в которую ввернуты гофрированные металлические (из нержавеющей стали) мембранные коробки 2 и 3. Коробки составлены из мембран с совпадающими профилями гофрировки. Внутренние полости коробок сообщаются между собой каналом и заполнены дистиллированной водой.

С центром верхней мембранной коробки связан железный сердечник, помещенный в катушках. Сердечник перемещается внутри разделительной трубки, выполненной из немагнитной стали.

Под действием разности давлений в камерах нижняя мембранная коробка сжимается; жидкость из нее через отверстие в перегородке перетекает в верхнюю мембранную коробку, вызывая перемещение верхнего центра и связанного с ним железного сердечника индукционного датчика. Сердечник перемещается до тех пор, пока сила, вызванная перепадом давлений, не уравновесится силами упругой деформации мембранных коробок.

При изменении температуры окружающей среды вода в мембранных коробках соответственно будет перемещать мембраны, а вместе с ними и сердечник.



Рисунок 23 – схема безшкального дифманометра-расходомера с двумя мембранными коробками: 1 – разделительная перегородка; 2 и 3 – мембранные коробки; 4 – сердечник 5 – катушки; 6 – разделительная трубка

Для уменьшения влияния колебаний температуры окружающей среды на показания прибора верхняя мембранная коробка выполняется с большей жесткостью, чем нижняя. Это приводит к тому, что при изменении температуры окружающей среды изменяется в основном объем нижней мембранной коробки.

Если перепад давления превысит расчетную величину или одна из мембранных коробок подвергнется одностороннему давлению, то повреждения мембранной коробки не произойдет, так как коробка, находящаяся в зоне более высокого давления, сожмется до соприкосновения мембран и вытеснит из своей полости всю воду в другую мембранную коробку.

Дифманометр-расходомер работает в комплекте со вторичным электронным дифференциально-трансформаторным прибором.

Дифманометры рассчитаны на два предела статического давления: до 6,27 МПа (64 кг/см2) и до 24,5 МПа (250 кг/см2), перепады давления от 5,3 до 133,3 кПа (40–1000 мм рт. ст.)

Различные пределы измерения достигаются применением мембранных блоков различной жесткости. Основная допустимая погрешность показаний прибора в комплекте со вторичным прибором +-2% от верхнего предела шкалы.

На рисунке 24 показана схема мембранного компенсационного дифманометра. Вялая мембрана 2 с жестким центром, несущая сердечник 1 дифференциально-трансформаторного датчика, подвешена на уравновешивающей пружине 3 к рычагу 4, проходящему через сильфонное уплотнение.

Возникающее вследствие перемещения сердечника напряжение разбаланса поступает на вход электронного усилителя 9. Реверсивный двигатель 7, управляемый электронным усилителем, поворачивает лекало 5 и через рычаг 4 воздействует на уравновешивающую пружину.

Система придет в равновесие, когда усилие, развиваемое мембраной, уравновесится силой пружины и сердечник возвратится в исходное среднее положение. При этом оси лекала и стрелки местной шкалы 6 прибора поворачиваются на угол, пропорциональный перепаду давления. С осью лекала кинематически связаны оси рамок 8 ферродинамических датчиков (от одного до трех), предназначенных для дистанционной передачи показаний.

Рисунок 24 – схема мембранного компенсационного дифманометра:

1 – сердечник; 2 – вялая мембрана; 3 – пружина; 4 – рычаг;

5 – лекало; б – Шкала; 7 – реверсивный двигатель; 8 – рамка

ферродинамического датчика; 9 – электронный усилитель

Приборы имеют различные пределы измерения разности давлений, от 6,18 до 21,3 кПа (63–160 мм рт. ст.). Максимальное допустимое рабочее давление 1,56 МПа (16 кг/см2). Основная допустимая погрешность дифманометра в комплекте с вторичным прибором ±1,5% от максимального предела шкалы.

3.1.5Манометры сопротивления

Действие приборов основано на изменении сопротивления проводника под действием внешнего давления. Электрическими проводниками принципиально могут служить любые металлы и сплавы, а также полупроводники. Однако для использования в манометрах сопротивления наиболее подходящим материалом является манганин, так как он обладает малым температурным коэффициентом сопротивления.

Недостаток манганина заключается в малом изменении сопротивления от действия давления (малый пьезокоэффициент).

Если обозначить сопротивление проводника, подвергаемого давлению, через R, изменение сопротивления – через , а давление – через р, то изменение сопротивления будет следовать линейному закону

,

где k – пьезокоэффициент, величина которого зависит от материала проводника. Из этого соотношения следует, что

.

Значения пьезокоэффициента не только различны для разных материалов, но непостоянны даже для одного и того же материала. Для манганина .

Малая величина пьезокоэффициента обусловливает целесообразность применения манганиновых манометров только для измерения высоких и сверхвысоких давлений. Одна из конструкций манганинового манометра показана на рисунке 25. Воспринимающей частью манометра является однослойная катушка 1 диаметром 8 мм из манганиновой проволоки диаметром 0,05 мм, намотанной бифилярно. Сопротивление катушки 180–200 ом. Один конец обмотки катушки припаян к гайке 2, а другой – к медному стержню 3. Стержень проходит через канал в гайке. Центральное положение стержня в канале обеспечивается эбонитовыми втулками 4 и 5. Уплотнение стержня достигается набивкой из фибровых и резиновых колец 6, сжатых гайкой 7. Гайка 2 ввертывается в корпус 8, снабженный ниппелем 9 для присоединения к аппарату или трубопроводу, в котором измеряется давление.

Для измерения сопротивления может быть использован любой измеритель электрических сопротивлений, например электронный уравновешенный мост. Пьезокоэффициент для разных образцов манганина непостоянен, поэтому манганиновые манометры сопротивления необходимо калибровать после изготовления.

Рисунок 25 – манганиновый манометр сопротивления: 1 – катушка; 2 и 7 – гайки; 3 – стержень; 4 и 5 – втулки; 6 – кольца; S – корпус; 9-ниппель

При линейной зависимости можно калибровать путем измерения сопротивления манганиновой катушки при двух различных давлениях, одним из которых может быть атмосферное давление. По литературным данным, линейная зависимость сопротивления манганина от давления проверена до 3000 МПа (30 000 кг/см2), Точность измерения давления манганиновым манометром зависит главным образом от точности измерения сопротивления катушки, качества калибровки и от точности определения калибровочных давлений. Погрешность измерения обычно не превышает ± 1% предела шкалы. Кроме металлических датчиков, в манометрах сопротивления применяются полупроводниковые датчики.

Известны конструкции манометров с угольными столбиками, составленными из тонких дисков диаметром 5–10 мм и толщиной 1,0 мм, изготовленных из электродного угля. У такого столбика при сжатии уменьшается сопротивление, что объясняется улучшением контактов между отдельными дисками. Пьезокоэффициент угольного столбика в тысячи раз больше, чем манганина; однако нелинейная зависимость сопротивления от давления, большой гистерезис, непостоянство градуировки и значительное влияние температуры ограничивают применение угольных манометров.

Использование других полупроводников пока не вышло из пределов лабораторных исследований.

Все полупроводниковые датчики пригодны для измерения давлений не выше 5,88–7,84 МПа.



Похожие страницы:

  1. Управление процессами (2)

    Лекция >> Информатика
    ... функционирование вычислительной машины, является подсистема управления процессами. Процесс (или по-другому, задача) - ... потребление системных ресурсов. Подсистема управления процессами планирует выполнение процессов, то есть распределяет процессорное ...
  2. Управление процессом получения стекломассы в производстве стекла

    Магистерская работа >> Промышленность, производство
    ... , т.е. реализована распределенная система управления процессом. Управление технологическим процессом может быть осуществлено из нескольких ... улучшает качество управления процессом. Разработана автоматизированная система управления процессом на базе ...
  3. Управление процессами формирования и распределения приябыли на предприятие

    Реферат >> Экономика
    ... данной курсовой работы является изучение управления процессами образования, распределения и использования прибыли предприятия ... компьютеризация Компьютеризация управления доходами занимает довольно существенное место в этом процессе. Однако, как ...
  4. Управление процессами обслуживания и качеством услуг на предприятиях индустрии гостеприимства

    Реферат >> Физкультура и спорт
    22 Управление процессами обслуживания и качеством услуг на предприятиях ... обслуживания Предметом исследования является проблема управления процессами обслуживания и качеством услуг в сфере гостеприимства ...
  5. Управление процессом принятия группового решения

    Реферат >> Психология
    ... 1.3Методы коллективного принятия решений……………………………..….11 2. Управление процессом группового принятия решений……………….…..14 2.1 Закономерности ... основе изученного материала рекомендации по управлению процессом принятия группового решения. Объект исследования ...
  6. Управление процессом планирования реализации продукции

    Реферат >> Государство и право
    ... внешнего и внутрифирменного планирования ………………………………………… . 15 Глава 2. УПРАВЛЕНИЕ ПРОЦЕССОМ ПЛАНИРОВАНИЯ РЕАЛИЗАЦИИ ПРОДУКЦИИ НА ПРИМЕРЕ ... и между планированием и учетом ресурсов. Глава 2. УПРАВЛЕНИЕ ПРОЦЕССОМ ПЛАНИРОВАНИЯ РЕАЛИЗАЦИИ ПРОДУКЦИИ НА ПРИМЕРЕ ...

Хочу больше похожих работ...