Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

Математика->Шпаргалка
Th:{ft , tT}–семейство ft: XC, определенных на выпуклом ограниченном мн-ве X ; B-база T. Если функции семейства дифференцируемы на X, се­мейство {ft...полностью>>
Математика->Курсовая работа
Возможность использования графов в исследовательских целях была продемонстрирована еще в 1736 г. Л.Эльером при решении так называемой «задачи о кенигс...полностью>>
Математика->Реферат
Аналіз як функція внутрішньовиробничого управління має власну метрологічну основу: принципи, функції, організаційну структуру, методи та інструменти, ...полностью>>
Математика->Реферат
Процесс падения покупательной способности бумажных денег вследствие дополнительной эмиссии или по причине сокращении товарной массы при сохранении неи...полностью>>

Главная > Дипломная работа >Математика

Сохрани ссылку в одной из сетей:

Рассмотрим функцию

,

изображенную на рис.5.

Если эту функцию трактовать как силу, действующую за промежуток времени от 0 до h, а в остальное время равную нулю, то импульс этой силы, вычисляемый по формуле равен единице.

На основании формул (1) и (2) изображение этой функции будет

.

В механике бывает удобно рассматривать силы, действующие очень короткий промежуток времени, как силы, действующие мгновенно, но имеющие конечный импульс. Поэтому вводят функцию δ(t) как предел функции при :

.

Эту функцию называют единичной импульсной функцией или дельта-функцией, причем , так как импульс силы равен единице.

1.2.2. Задача о плотности материальной точки.

Попытаемся определить плотность, создаваемую материальной точкой массы 1.

Положим, что эта точка есть начало координат. Чтобы определить плотность, распределим единичную массу равномерно внутри шара радиуса ε с центром в 0. В результате получим среднюю плотность fε(x), равную

Но нас интересует плотность при (т.е. ε стремится к 0 справа). Примем сначала в качестве искомой плотности δ(x) предел последовательности средних плотностей fε(x) при , то есть функцию

(3)

От плотности δ естественно требовать, чтобы интеграл от нее по всему пространству давал бы полную массу вещества, то есть

. (4)

Но для функции δ(x), определенной формулой (3), . Это значит, что функция не восстанавливает массу (не удовлетворяет требованию (4)) и поэтому не может быть принята в качестве искомой плотности. Таким образом, предел последовательности средних плотностей fε(x) не подходит для наших целей, то есть не может быть принят в качестве плотности δ(x).

Для любой непрерывной функции φ(x) найдем слабый предел последовательности при .

Покажем, что

(5)

Действительно, в силу непрерывности функции φ(x) для любого η>0 существует такое ε0>0, что , коль скоро . Отсюда при всех получаем

.

Покажем, что .

Так как (здесь dx фактически равен dV), то - объем шара радиуса ε. Следовательно,

.

Формула (5) обозначает, что слабым пределом последовательности функций fε(x), , является функционал φ(0) (а не функция!), сопоставляющий каждой непрерывной функции φ(x)число φ(0) – ее значение в точке x=0. Этот функционал принимается за определение плотности δ(x) – это и есть дельта-функция Дирака. Итак, можно записать

, ,

понимая под этим предельное соотношение (5). Значение функционала δ на функции φ – число φ(0) – обозначается так:

(6)

Это равенство дает точный смысл дельта-функции, введенной Дираком, обладающей следующими свойствами:

δ(x)=0, x≠0, , C.

Роль интеграла здесь играет величина - значение функционала δ на функции φ.

Таким образом, дельта-функция - функционал, сопоставляющий по формуле =φ(0) каждой непрерывной функции φ число φ(0)- ее значение в нуле.

Проверим, что функционал δ восстанавливает полную массу. Действительно, роль интеграла играет величина , равная, в силу (6), значению функции, тождественно равной 1, в точке x=0, то есть =1(0)=1.

Таким образом, плотность, соответствующая точечному распределению масс, не может быть описана в рамках классического понятия функции, и для ее описания следует привлекать линейные (непрерывные) функционалы.

1.3.Математическое определение функции Дирака.

Функция δ(x) применяется не только в механике, а во многих разделах математики, в частности при решении многих задач уравнений математической физики.

Пусть f(t)- функция, непрерывная на (a;b), а - иглообразная функция. Для дальнейшего введения определения дельта-функции Дирака рассмотрим поведение интеграла

при

Рассмотрим (a;b), содержащий внутри себя точку t=0, то есть a<0<b и . Из определения иглообразной функции и обобщенной теоремы о среднем получаем:

, где .

Если , то и , а в силу непрерывности функции f(t) и . Поэтому при a<0<b

(7)

Если же числа a и b одинаковых знаков (a<b<0 или 0<a<b), то есть (a;b) не содержит внутри себя точки t=0, то

при всех достаточно малых λ.

Если числа a и b имеют одинаковые знаки, то при , если a>0 (рис.6), или при , если b<0 (рис.7), интервал не будет пересекаться с (a;b ), а поэтому для всех

и .

Следовательно,

(8)


В ведём обозначение:

(9)

Таким образом, δ(t) – обобщенная функция, характеризующая предельное поведение иглообразной функции при и использующаяся при вычислении интегралов.

Дельта-функцию можно применять и формально, пользуясь лишь следующим ее основным свойством, вытекающим из равенств (7) - (9) для любой непрерывной функции.

(10)

Введем подстановку = , то

(11)

Свойство, описываемое соотношениями (10) и (11) называют фильтрующим свойством дельта-функции.

При f(t)≡1 соотношения (9) – (11) принимают вид

Если за интервал (a;b) взять всю числовую ось, то .

Глава 2

Применение функции Дирака

2.1. Разрывные функции и их производные.

XX - XI век находит много конструктивных решений для того, что казалось невозможным в XIX веке. Так дельта-функция решает вопрос о производной в точке разрыва (в частности, для разрыва, имеющего вид конечного скачка).


Рассмотрим интеграл функции δ(x) в зависимости от его верхнего предела, то есть функцию

. (12)

1


График этой функции имеет вид «ступеньки» (рис.8). Пока x<0, область интегрирования в формуле (12) целиком находится там, где δ(x)=0. Следовательно, θ(x)=0 при x<0. Если же x>0, то при интегрировании включается окрестность начала координат, где . С другой стороны, так как при x>0 также δ(x)=0, то значение интеграла не изменяется, когда верхний предел меняется от 0,1 до 1, или до 10, или до . Следовательно, при x>0 имеем

как и показано на рис.8.

Таким образом, с помощью дельта-функции сконструирована простейшая разрывная функция θ(x) такая, что при x<0, θ(x)=0, а в области x>0, θ(x)=1. При x=0, θ терпит разрыв от 0 до 1.

Не зная дельта-функции, приходится говорить, что производную нельзя находить там, где функция разрывна. Мы построили разрывную функцию θ(x). По теореме о существовании первообразной для ограниченной функции, имеющей конечное или счетное число точек разрыва, общее правило связи между интегралом и производной имеет вид:

.

Тогда .

Применим его к выражению (12), получим

.

Значит, для производной разрывной функции не надо делать исключений: просто в точке разрыва производная равна «особенной» функции – дельта-функции Дирака.

Производная разрывной функции определяется следующим образом:

f’(x)={f’(x)}+[fx0 ]δ(xx0),

где fx0 – величина разрыва в точке x0,

{f’(x)} – производная везде, кроме точки x0.

Благодаря дельта-функции Дирака можно найти производные в более сложных случаях.

2.2. Нахождение производных разрывных функций.

Пример 1: Найти производную функции

.

График функции рис.8. Разрыв имеет место при x=1. Величина разрыва y(1+0)-y(1-0) =1-2-1= -2, где

y(1+0) – это предельное значение y при приближении x к 1 справа (со стороны x>1), y(1 - 0) – то же слева. Отсюда получаем, что

(13)

Такая запись лучше утверждения, что везде, кроме точки x=1, где функция терпит разрыв и не имеет производной. В записи (13) в одной строчке содержится и факт разрыва (раз вошла δ), и место его (x=1), и величина (коэффициент (- 2) при δ).

Пример 2:

.

.

Разрыв в точке x=1. Величина разрыва: y(1+0)-y(1 - 0)=2. Теперь мы можем точку х=1 присоединить к левой области и тогда написать

.

Либо другой вариант – можно присоединить х=1 к правой области и тогда с равным правом запишем

.

Можно написать также

,

где

Пример 3:

Рассмотрим модель прохождения тока вдоль цепи, представленную в работе М.Н. Дубайловой «Применение рядов Фурье при решении задач Электродинамики» [7].

Найдем производную данной функции, представленной графиком зависимости силы тока от времени:

По графику видно, что сила тока в точках α/(2ω), 2π-α/(2ω), 2π+α/(2ω), 4π-α/(2ω),… мгновенно падает от А до 0 или от 0 до –А, то есть ток мгновенно становится равным 0, и вновь появляется с отрицательным значением. Исчезновение тока в цепи означает, что цепь разрывается, поэтому в реальном процессе снова появится через какое-то время ток самопроизвольно не может. Такая модель прохождения тока вдоль цепи является противоречивой.

В действительности сила тока меняется не мгновенно, а в течение короткого конечного промежутка времени. Реальный процесс можно изобразить следующим графиком (рис.10).

В физике используется упрощенная модель, график которой представлен на рис.9, так как работа силы тока в коротком конечном промежутке времени Δt равна нулю (A==A1+A2=A1+(-A1)=0, геометрически числа A1 и A2 выражают площади заштрихованных фигур, см. рис.10).

В математике рис.9 не является графиком функции (одному значению t соответствует бесконечное множество значений I). Поэтому математика рассматривает упрощенную модель, абстрагированную от реального процесса, разрывая функцию, график этой модели представлен на рис.11.

Найдем производную данной функции.

Для этого функцию зададим следующим образом:

.

Разрывы имеют место при .

Величины разрывов равны A, -A, A, A соответственно. Отсюда получаем, что

.

Заключение

В выпускной квалификационной работе поставленные цели достигнуты, то есть были достаточно подробно рассмотрены математический и физический подходы к определению функции Дирака, причем физический подход к определению осуществлен через решение физических задач об импульсе и плотности материальной точки. Применение функции Дирака для нахождения производных разрывных функций было проиллюстрировано с помощью математических и физических примеров, выявлена целесообразность применения дельта-функции для нахождения производных разрывных функций. Теоретический материал подтверждается решением различных примеров.

Таким образом, функция Дирака – одно из наиболее необходимых и широко применяемых понятий, как в физике, так и в математическом анализе.

Библиографический список

  1. Архипов, Г.И. Лекции по математическому анализу [Текст]: учебник для университетов и пед. вузов / Г.И. Архипов, В.А. Садовничий, В.Н. Чубариков. Под ред. В.А. Садовничего. – М.: Высш. шк., 1999.

  2. Большая советская энциклопедия [Текст] / Гл. ред. А.М. Прохоров. – М.: Советская энциклопедия, 1972.

  3. Бронштейн, И.Н. Справочник по математике [Текст] / И.Н. Бронштейн, К.А. Семендяев. – М.: Наука, 1967.

  4. Владимиров, В.С. Обобщенные функции и их применение [Текст] / В.С. Владимиров. – М.: Знание, 1990.

  5. Владимиров, В.С. Обобщенные функции в математической физике[Текст] / В.С. Владимиров. – М.: Наука, 1981.

  6. Дирак, П. Принципы квантовой механики [Текст]/ П.Дирак. - М.: Наука, 1979.

  7. Дубайлова, М.Н. Применение рядов Фурье при решении задач Электродинамики [Текст] / Выпускная квалификационная работа. – Киров, ВГГУ 2003.

  8. Ершова, В.В. Импульсные функции. Функции комплексной переменной. Операционное исчисление [Текст] / В.В. Ершова. Под ред. В.И. Азаматовой. - Минск: Вышэйш. школа, 1976.

  9. Зельдович, Я.Б. Высшая математика для начинающих [Текст] / Я.Б. Зельдович. – М.: Наука, 1970.

  10. Колмогоров, А.Н. Элементы теории функций и функционального анализа [Текст] / А.Н. Колмогоров, С.В. Фомин. – М.: Наука, 1972.

  11. Пискунов, Н.С. Дифференциальное и интегральное исчисления [Текст] / Н.С. Пискунов // учеб. для втузов. В 2-х т. Т. II: - М.: Интеграл-Пресс, 2001.

  12. Соболев, В.И. Лекции по дополнительным главам математического анализа [Текст] / В.И. Соболев. – М.: Наука, 1968.

1



Похожие страницы:

  1. Теория сигналов и систем. Конспект лекций и практических занятий

    Конспект >> Коммуникации и связь
    ... -косинусные функции, дельта-функция и функция единичного скачка. Дельта-функция или функция Дирака. По определению, дельта-функция описывается ... и в виде свертки одного периода с гребневой функцией Дирака: sT(t) = s(t) * ШT(t). При переходе в частотную ...
  2. Понятие состояния квантово-механической системы. Принцип суперпозиции

    Курсовая работа >> Физика
    ... с непрерывным спектром собственных значений. 2.6 Дельта-функция Дирака. 2.7 Операторы координаты и импульса. 2.8 Соотношение ... спектра собственных значений. 2.6 Дельта-функция Дирака К необходимости введения -функции П. Дирак пришел при рассмотрении величин ...
  3. Построение математических моделей методом идентификации

    Курсовая работа >> Информатика
    ... на рис. 2.1а: а) б) Рис.2.1. Функции Хевисайда (а) и Дирака (б) Реакция САУ на единичный скачек ... есть на вход системы поступает функция Дирака (-функция, импульсная функция, рис. 2.1б) определяемая: то ...
  4. Энергетический спектр и оптические свойства водородоподобных примесных центров в квантовых точках

    Дипломная работа >> Физика
    ... световой волны; δ(x) – дельта функция Дирака равная . (2.3.2) Коэффициент поглощения комплекса ... (0,0,0)) , (2.3.3) где ; P(u) – функция Лифшица – Слезова равная , (2.3.4) δ(x) – дельта функция Дирака равная (2.3.5) , (2.3.6) (2.3.7) На рисунках ...
  5. Диалектика развития понятия функции в школьном курсе математики

    Дипломная работа >> Педагогика
    ... функции в школьном курсе. § 2.1. Линейная функция. § 2.2. Квадратичная функция. § 2.3. Обратная пропорциональность. § 2.4. Степенная функция. § 2.5. Показательная функция. § 2.6. Логарифмическая функция. § 2.7. Тригонометрическая функция ...

Хочу больше похожих работ...